首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca(2+) ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin-spin T(2) magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.  相似文献   

2.
Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.  相似文献   

3.
The small-angle x-ray scattering (SAXS) technique has been applied to investigate solution and gel structures of alginate in the absence and presence of two divalent cations: Ca(II) and Cu(II). We have observed a broad maximum in the scattering curve, a characteristic of polyelectrolyte, for the purified alginate sample. The scattering maximum disappears in excess of added simple salt and shifts toward the higher angle region with increasing alginate concentration. Concentration dependence of the position and intensity of the maximum follows power law relations with exponents close to those predicted by theory. Data analysis shows an increase in correlation length ξ and cross-sectional diameter d0, of polymer chains upon gelation and suggests that a dimeric structure is adopted in the junction zone, consistent with the “egg-box” model previously proposed. In the Ca(II)–alginate system, the molecular parameters ξ and d0 are found to have good correlation with the macroscopic properties of gelation, such as gel point determined by viscosity measurements. However, for the Cu(II)–alginate system there is no clearly transitional behavior observed in ξ and d0, implying that the junction zone may be replaced by a more uniformly distributed site binding of Cu(II) ions to the carboxyl groups of both mannuronate and guluronate residues, in confirmation of previous 13C-nmr results. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Using methods of IR spectroscopy, light scattering, gel-electrophoresis DNA structural transitions are studied under the action of Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ ions in aqueous solution. Cu2+, Zn2+, Mn2+ and Ca2+ ions bind both to DNA phosphate groups and bases while Mg2+ ions-only to phosphate groups of DNA. Upon interaction with divalent metal ions studied (except for Mg2+ ions) DNA undergoes structural transition into a compact form. DNA compaction is characterized by a drastic decrease in the volume occupied by DNA molecules with reversible formation of DNA dense particles of well-defined finite size and ordered morphology. The DNA secondary structure in condensed particles corresponds to the B-form family. The mechanism of DNA compaction under Mt2+ ion action is not dominated by electrostatics. The effectiveness of the divalent metal ions studied to induce DNA compaction correlates with the affinity of these ions for DNA nucleic bases: Cu2+>Zn2+>Mn2+>Ca2+>Mg2+. Mt2+ ion interaction with DNA bases (or Mt2+ chelation with a base and an oxygen of a phosphate group) may be responsible for DNA compaction. Mt2+ ion interaction with DNA bases can destabilize DNA causing bends and reducing its persistent length that will facilitate DNA compaction.  相似文献   

5.
The plasma membrane calcium pump in most mammalian cells is the basic mechanism for assuring a low cytoplasmic calcium concentration. In inside-out human red cell membrane vesicles /IOVs/ the substrate and metal specificity as well as the intracellular protein /calmodulin/ regulation of the ATP-dependent active calcium transport can be investigated insitu. In this paper we demonstrate that Me2+. ATP4? /in the following MeATP/ complexes, including MgATP, MnATP, CoATP, FeATP, and NiATP, can serve as substrates for the calcium pump in IOVs. Calcium pumping is activated by the above metals, while Sr, Ba, Cu, Cd ions or the trivalent cations are ineffective in this respect. Calmodulin-stimulation of the calcium transport is present independent of the metal ions used for the activation of the pump. Based on kinetic studies we suggest that divalent metal ions interact with the red cell calcium pump at four different sites: 1./ MeATP complex is the true substrate of the pump; 2./ Ca or Sr ions activate the system by binding to the transport site/s/ and other metal ions competitively inhibit this binding; 3./ the presence of free divalent metal ions /Mg, Mn, Co, Fe, or Ni, but not Ca, Sr, Ba/ is required for activating calcium translocation; 4./ interaction with a Ca — calmodulin complex specifically stimulates calcium pumping.  相似文献   

6.
The influence of added salts on the dynamic viscoelastic properties are investigated for aqueous solutions of alginates that have various molecular weights and mannuronate/guluronate (M/G) ratios. The dynamic moduli of the systems increase with increasing concentration of the added salt in the low-frequency region. The effect is notable in the order of KCl < NaCl < MgCl2 ? CaCl2. The values of the dynamic moduli in the rubbery plateau are independent of the addition of the salts, irrespective of the M/G ratio of the alginate. These facts strongly suggest that the structure that is formed by the interaction between the alginates and the metal ions does not work as cross-linking points but as heterogeneous relaxation units having a relatively long relaxation time from a rheological viewpoint.  相似文献   

7.
The activation of DNase I by Mg, Mn, Co, Ni, Fe, Cd, Zn, Ba, Sr, Ca, and Cu ions has been studied by several methods, at different pH and salt concentrations. Mg, Mn, and Co are the best activators for initial stages of degradation. A synergistic effect is shown only by the pair Mg-Ca. Optimal pH of action is always situated at 6.5. DNase II is activated to about the same degree by alkaline earths and Mn ions. Cd and Cu are strong inhibitors. Optimal pH is always 4.6. By titration of liberated secondary phosphate groups, two stages in the hydrolysis of DNA by DNase I are evidenced: a rapid phase activated most by Mg and a slow phase activated by Ca. Some possible mechanisms of action of both enzymes are outlined and the general influence of metal ions is discussed.  相似文献   

8.
Ionic and acid gel formation of epimerised alginates; the effect of AlgE4   总被引:1,自引:0,他引:1  
AlgE4 is a mannuronan C5 epimerase converting homopolymeric sequences of mannuronate residues in alginates into mannuronate/guluronate alternating sequences. Treating alginates of different biological origin with AlgE4 resulted in different amounts of alternating sequences. Both ionically cross-linked alginate gels as well as alginic acid gels were prepared from the epimerised alginates. Gelling kinetics and gel equilibrium properties were recorded and compared to results obtained with the original non-epimerised alginates. An observed reduced elasticity of the alginic acid gels following epimerisation by AlgE4 seems to be explained by the generally increased acid solubility of the alternating sequences. Ionically (Ca(2+)) cross-linked gels made from epimerised alginates expressed a higher degree of syneresis compared to the native samples. An increase in the modulus of elasticity was observed in calcium saturated (diffusion set) gels whereas calcium limited, internally set alginate gels showed no change in elasticity. An increase in the sol-gel transitional rate of gels made from epimerised alginates was also observed. These results suggest an increased possibility of creating new junction zones in the epimerised alginate gel due to the increased mobility in the alginate chain segments caused by the less extended alternating sequences.  相似文献   

9.
The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.  相似文献   

10.
Copper and nickel adsorption onto calcium alginate, sodium alginate with an extracellular polysaccharide (EPS) produced by the activated sludge bacterium Chryseomonas luteola TEM05 and the immobilized C. luteola TEM05 from aqueous solutions were studied. After that, the multi metal ions containing these ions together were prepared and partial competitive adsorptions of these mixtures were also investigated. The metal adsorption of gel beads were carried out at pH 6.0, 25 °C. The maximum adsorption capacities in Langmuir isotherm for calcium alginate, calcium alginate + EPS, calcium alginate + C. luteola TEM05 and calcium alginate + EPS + C. luteola TEM05 were 1.505, 1.989, 1.976, 1.937 mmol/g dry weight for Cu(II) and 0.996, 1.224, 1.078, 1.219 mol/g dry weight for Ni(II), respectively.The competitive biosorption capacities of the carrier for all metal ions were lower than single conditions.  相似文献   

11.
The interaction between the native DNA macromolecules and Ca2+, Mn2+, Cu2+ ions in solutions of low ionic strength (10(-3) M Na+) is studied using the methods of differential UV spectroscopy and CD spectroscopy. It is shown that the transition metal ions Mn2+ exercise binding to the nitrogen bases of DNA at concentrations approximately 5 x 10(-6) M and form chelates with guanine of N7-Me(2+)-O6 type. Only at high concentrations in solution (5 x 10(-3) M) do Ca2+ ions interact with the nitrogen bases of native DNA. In the process of binding to Ca2+ and Mn2+ the DNA conformation experiences some changes under which the secondary structure of the biopolymer is within the B-form family. The DNA transition to the new conformation is revealed by its binding to Cu2+ ions.  相似文献   

12.
Polyphenols and divalent metal ions present in the tissue may seriously affect the degradation of alginate during anaerobic digestion of brown seaweeds. Laminaria hyperborea stipes, harvested at 59 °N off the Norwegian coast in the autumn, were degraded at different concentrations of polyphenols in anaerobic batch reactors at 35 °C and pH 7. This was done by removing or adding the mechanically peeled outer phenolic layer of the algae, and using methanogenic and alginate degrading inocula already adapted to L. hyperborea degradation. Initial alginate released from the algal particles was affected by NaOH titrations because the Ca/Na-ratio was reduced. After a rapid consumption of the mannitol, alginate lyases were induced, and guluronate lyases showed the highest extracellular activity. Then the microbes digested 0.12–0.23 g Na-alginate L−1 h−1. Later the degradation rate of alginates declined almost to zero, and 13–50% of the alginate remained insoluble. The total solubilisation of alginates was apparently limited by both Ca-crosslinked guluronate residues and complexation with compounds such as polyphenols. The methane production had a lag phase that increased at higher amounts of soluble polyphenols, and the total fermentation probably also became product inhibited if soluble compounds such as acetate, ethanol and butyrate were accumulated. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

13.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

14.
The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60–91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91–230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).  相似文献   

15.
Two series of amino-modified silicate gels prepared by sol-gel processing were used to absorb Cu(II), Ni(II), Co(II), Mn(II) and Cr(III) from aqueous solutions. These easily prepared sorbents with various content of primary amino groups in series (A) or primary and secondary amino groups in series (AA) have reasonable stability. The gel composition, time and concentration dependence of the uptake of the metal ions by these materials were studied systematically. These materials would be further used as supports to disperse catalytically active phases by conventional wet chemical procedures. Apart from this they demonstrate potential for the preconcentration aid for transition metal analysis.  相似文献   

16.
Studies have been undertaken on the binding of Mn2+ ions to two alginate samples of different mannuronate:guluronate ratios (M:G), a sample of low-ester amidated pectin and poly(acrylic acid) (PAA). The binding of Ca2+ ions has also been included for the latter for comparison. The binding curves showed an initial steep rise at low additions of Mn2+ or Ca2+ indicating that all of the ions were bound to the polymer chains with none remaining in solution. At higher additions, the binding curves showed a plateau region and the maximum amount bound, theta, was found to be 0.2, 0.2, 0.25, and 0.33 mol M(2+)/mol COO- for high M:G alginate, low M:G alginate, pectin, and PAA, respectively. The binding curves for Mn2+ and Ca2+ with PAA were superimposable. In all cases, theta was less than the stoichiometric equivalent and also less than predicted by Manning counterion condensation theory. The linear charge density, xi, for the polymers is 1.49, 1.55, 1.62, and 2.85, and it was found that at maximum binding the effective linear charge density, xi(effective), decreased to a value close to 1 in each case and not 0.5 as predicted from Manning's two-variable theory. The mobility of the PAA chains has been followed by electron spin resonance spectroscopy using nitroxide spin labels covalently attached to the polymer, and the gelation of the pectin and alginate samples has been monitored using small deformation oscillatory experiments. For PAA at maximum binding, it was noted that there was a loss of chain mobility and precipitation. For pectin and alginate, gelation occurred and the stoichiometric ratio for maximum binding corresponded to the stoichiometric ratio for the maximum in G'. Precipitation and gelation are attributed to the formation of polymer-metal complexes involving one or two carboxylate groups resulting in charge reversal or charge annihilation.  相似文献   

17.
Alginates are polysaccharides consisting of beta-D-mannuronate and alpha-L-guluronate units. In the presence of bivalent cations like calcium the guluronate blocks form physically cross-linked gels. The gelation properties of alginates play an important role in the stability of extracellular polymer substances and in the food industry. When stock solutions of Ca2+ ions and alginate are mixed, the gelation starts before the Ca2+ ions are evenly distributed, which leads to non-uniform gels. In this contribution, Ca alginate gels were prepared by in situ gelation using glucono-delta-lactone and CaCO3. In this way, uniform gels could be prepared directly in the measuring cell. Below a critical concentration, highly viscous solutions were obtained, which were below the critical point of gel formation. In these solutions at low rotational speeds a Schlieren peak arose, which became smaller and steeper with increasing time until a new meniscus could be detected. This behaviour is in contrast to the peak broadening due to diffusion after a synthetic boundary was formed. Evaluation of the data leads to negative diffusion coefficients. It has been shown by others that the mutual diffusion coefficient must be negative in the spinodal region. This phenomena is known as uphill diffusion and leads to phase separation of a binary system. The formation of the gel phase in this case is therefore discussed as uphill diffusion.  相似文献   

18.
《Phytochemistry》1986,25(2):443-448
Mannitol, sucrose and four monosaccharides were obtained from an ethanolic extract of Ascoseira mirabilis. Sequential extraction with aqueous calcium chloride, dilute acid and dilute alkali gave mixtures of laminaran, ‘fucan’ and alginic acid. Laminarans fractionated from the extracts contained different proportions of uniformly (1 → 3) and (1 → 6) linked chains of β-D-glucose residues. The ‘fucan’ contained varying proportions of fucose, galactose and glucuronic acid, small amounts of xylose, mannose, glucose, half ester sulphate and protein. Extraction of the weed under mild alkaline conditions gave a yield of 13.4% of low molecular weight calcium alginate with a mannuronate to guluronate ratio of 30:70 and only a small proportion of sequences of alternating residues. Selective extraction and fractionation gave alginate fractions rich (> 80%) in mannuronate or guluronate.  相似文献   

19.
The plasmas of breast cancer patients and healthy donors were analyzed for selected trace metals by a flame atomic absorption spectrophotometric method. In the plasma of breast cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe, and Zn were 3584, 197.0, 30.80, 6.740, 5.266, and 6.170 ppm, respectively, while the mean metal levels in the plasma of healthy donors were 3908, 151.0, 72.40, 17.70, 6.613, and 2.461 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Ni, Pb, Sb, Sr, and Zn were noted to be significantly higher in the plasma of breast cancer patients compared with healthy donors. Very strong mutual correlations (r > 0.70) in the plasma of breast cancer patients were observed between Cd–Pb, Cr–Li, Li–K, Li–Cd, K–Cr, Li–Pb, Cr–Co, Cu–Ni, Co–K, Cd–K, and K–Pb, whereas, Al–Cr, Ca–Zn, Cd–Sb, Cd–Zn, Ca–Mg, Fe–Zn, and Na–Mn exhibited strong relationships (r > 0.60) in the plasma of healthy donors. The cluster analysis revealed considerably different apportionment of trace metals in the two groups of donors. The average metal concentrations of different age groups of the two donor categories were also evaluated, which showed the build-up of Al, Cd, Co, Cr, Mn, Li, Pb, Sb, and Zn in the plasma of breast cancer patients. The role of some trace metals in carcinogenesis is also discussed. The study indicated appreciably different patterns of metal distribution and correlation in the plasma of breast cancer patients in comparison with the healthy population.  相似文献   

20.
The kinetic effects of the binding of various metal ions (Ca(2+), Cd(2+), Co(2+), Mg(2+), Mn(2+), Sr(2+) and Zn(2+)) to apo bovine alpha-lactalbumin has been monitored by means of stopped-flow fluorescence spectroscopy. Our results show that the measured rate constant for the binding of metal ions to the Ca(2+)-site increases with increasing binding constant. This is, however, not the case for metal ions binding to the Zn(2+)-site. The binding experiments performed at different temperatures allowed us to calculate the activation energy for the transition from the metal-free to the metal-loaded state of the protein. These values do not depend on the nature of the metal ion but are correlated with the type of binding site. As a result, we were able to demonstrate that Mg(2+), a metal ion which was thought to bind to the Ca(2+)-site, shows the same binding characteristics as Co(2+) and Zn(2+) and therefore most likely interacts with the residues belonging to the Zn(2+)-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号