首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small changes in lipogenic enzyme activity induced by dietary fats of different composition may, over the long term, have significant impact on the development of obesity. We have investigated the effect of high fat diets (45% of calories as fat) on abundance of mRNA encoding fatty acid synthetase (FAS) and glycerophosphate dehydrogenase (GPDH) in male Sprague-Dawley rats. When caloric intake was equal, the relative amount of hepatic FAS mRNA was greater in rats fed a saturated compared to a polyunsaturated fat diet. This difference could not be attributed to diet-induced changes in plasma insulin concentration. However, both fat diets suppressed hepatic FAS mRNA compared to a sucrose diet. Close correlation between FAS specific activity and the relative amount of mRNA suggested that regulation was mainly at a pre-translational level. Adipose tissue FAS mRNA was suppressed by the two fat diets equally while GPDH mRNA was unaffected by dietary composition. Retroperitoneal fat pads were significantly larger in rats fed saturated compared to those fed polyunsaturated fat for 26 weeks. We concluded that dietary saturated fats fail to suppress hepatic de novo lipogenesis as effectively as polyunsaturated fats, which may have implications for the prevention of obesity in humans.  相似文献   

2.
LU, HUIQING, ANNE BUISON, VIRGINIA UHLEY AND K-L CATHERINE JEN. Long-term weight cycling in female Wistar rats: effects on metabolism. Obes Res. Weight cycling (WC) induced by ad-lib and restricted high fat (HF) feeding has been shown to reduce final body weight but not body fat percent in female Wistar rats. We examined the metabolic consequences of this type of WC. Five groups of female Wistar rats were fed a HF diet and the sixth group was fed a low fat diet to serve as a control group. Of the five HF groups, four groups were weight cycled by ad-lib and restricted feeding of the HF diet One of these groups weight cycled three times (HFCYC group) while the remaining three groups weight cycled once only, corresponding to the first, second and the third cycle of the HFCYC group. HF feeding induced hyperinsulinemia, hypertriglyceridemia, insulin resistance and elevated adipose tissue lipoprotein lipase (AT-LPL) activity levels as compared to rats fed the low fat (LF) control diet. WC further increased blood insulin concentrations and insulin resistance in rats with three cycles of WC. However, blood pressure was not affected by HF feeding or WC. The magnitude of increase of AT-LPL was reduced in weight cycled, HF fed obese rats after 15 weeks refeeding. We concluded that even though WC did not enhance weight gain nor impair weight loss, it did facilitate the development of insulin resistance and may predispose animals to diabetes.  相似文献   

3.
Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.  相似文献   

4.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

5.
Increased dietary fat intake generally, and saturated fat specifically, will lead to impairment of insulin action and to development of metabolic syndrome. The aim of this study was to find out changing of hepatic glucose output in dependence of high monounsaturated and high polyunsaturated fat diet and possible direct action of insulin in hepatocytes. Hepatocytes were isolated by a collagenase perfusion technique and cultured for 24 h in M 199 serum-free medium. The glucose production in hepatocytes isolated from rats on high polyunsaturated fat diet, as well as those isolated from rats on high monounsaturated fat diet was significantly higher than in standard controls. Insulin significantly decreased glucose production but only in hepatocytes obtained from rats on high monounsaturated fat diet. On the other side energy expenditure was significantly higher in rats on high monounsaturated fat diet and significantly lower in rats on high polyunsaturated fat diet comparable with animals on standard diet. Monounsaturated fat in Mediterranean diet could have beneficial effect on the development of the metabolic syndrome by increasing insulin sensitivity and energy expenditure.  相似文献   

6.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

7.
Summary Dietary polyunsaturated fat has been shown to stimulate mammary tumorigenesis induced in rats by 7,12-dimethylbenz(a)anthracene (DMBA). Studies were undertaken to investigate the effect of polyunsaturated fat and DMBA on splenic natural killer (NK) activity and prostaglandin E (PGE) synthesis. In a first experiment, splenic NK activity at 33, 55, 75, and 110 days of age was measured in Sprague-Dawley rats fed 0.5% low fat (LF), 5% normal fat (NF), or 20% high fat (HF) corn oil diets from 23 days of age. At 55 days of age, half of the rats from the 75 and 110 day age groups were given 5 mg DMBA. Ten days after the initiation of the diets splenic NK activity against YAC-1 lymphoma was decreased from 50% cytotoxicity in rats fed NF diet to 21% cytotoxicity in rats fed HF diet, but was not affected by LF feeding. No difference in NK activity was observed among the groups at the later time periods. DMBA had no effect on NK activity at 20 or 55 days after its administration. In a second experiment, where DMBA (15 mg/rat) was given to half of the rats at 50 days of age and NF or HF diets were started 3 days later, NK activity was 35% in rats fed NF diet and 21% in rats fed HF diet, 5 days after the diets were started. No difference in NK activity in rats fed either diet was observed at later time periods. DMBA decreased both NK activity and spleen cellularity transiently. In both experiments, PGE synthesis by spleen cells cultured for 18 h was not affected by dietary fat intake, but was slightly increased 3 days after DMBA administration. Results from these experiments suggest that the stimulation of DMBA-induced mammary tumorigenesis by polyunsaturated fat and by DMBA itself may possibly be mediated by a transient decrease in splenic NK cell activity.This work was supported by grants CA-35641, CA-33240, CA-13038 and Core Grant CA-24538 from the National Cancer Institute  相似文献   

8.
Birk RZ  Regan KS  Brannon PM 《Life sciences》2003,73(21):2761-2767
Leptin expression exhibits developmental and dietary regulation, but it is unknown whether there is an interaction of the regulation by dietary fat and postnatal development. The purpose of this study was to test the effect of different levels of dietary polyunsaturated fat on circulating leptin levels at different post-natal developmental stages. Pregnant (Sprague-Dawley) rats consumed from day 15 of pregnancy through day 9 of lactation a low fat, (11% of energy; LF) polyunsaturated safflower oil diet. From day 9 of lactation, dams and their respective pups were fed low, moderate (40% of energy; MF) or high (67% of energy; HF) polyunsaturated safflower oil diets to full maturation (56 days). Diets were iso-energetic and iso-nitrogenous. Milk fatty acid content reflected the mothers and pups diet, with 15 to 100 fold less C10:0 and 2.6 to 3.3 fold more C18:2 in MF and HF groups compared to LF diet. In newborn rats through post-natal day 56, levels of polyunsaturated fat in mothers' milk and mothers/pups diet had no effect on the levels of circulating leptin. The post-natal development period significantly affected circulating leptin levels (p < 0.001, 15 days = 56 days > 21 days > 28 days). In summary, the developmental postnatal stage regulates leptin levels, independently of the polyunsaturated fat levels in the diet.  相似文献   

9.
Dietary trans‐fatty acids are associated with increased risk of cardiovascular disease and have been implicated in the incidence of obesity and type 2 diabetes mellitus (T2DM). It is established that high‐fat saturated diets, relative to low‐fat diets, induce adiposity and whole‐body insulin resistance. Here, we test the hypothesis that markers of an obese, prediabetic state (fatty liver, visceral fat accumulation, insulin resistance) are also worsened with provision of a low‐fat diet containing elaidic acid (18:1t), the predominant trans‐fatty acid isomer found in the human food supply. Male 8‐week‐old Sprague–Dawley rats were fed a 10% trans‐fatty acid enriched (LF‐trans) diet for 8 weeks. At baseline, 3 and 6 weeks, in vivo magnetic resonance spectroscopy (1H‐MR) assessed intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content. Euglycemic–hyperinsulinemic clamps (week 8) determined whole‐body and tissue‐specific insulin sensitivity followed by high‐resolution ex vivo 1H‐NMR to assess tissue biochemistry. Rats fed the LF‐trans diet were in positive energy balance, largely explained by increased energy intake, and showed significantly increased visceral fat and liver lipid accumulation relative to the low‐fat control diet. Net glycogen synthesis was also increased in the LF‐trans group. A reduction in glucose disposal, independent of IMCL accumulation was observed in rats fed the LF‐trans diet, whereas in rats fed a 45% saturated fat (HF‐sat) diet, impaired glucose disposal corresponded to increased IMCLTA. Neither diet induced an increase in IMCLsoleus. These findings imply that trans‐fatty acids may alter nutrient handling in liver, adipose tissue, and skeletal muscle and that the mechanism by which trans‐fatty acids induce insulin resistance differs from diets enriched with saturated fats.  相似文献   

10.
This work was performed to elucidate whether growth hormone (GH)-mediated loss of adipose tissue and responses in plasma insulin and leptin are modulated by diet composition. 12-month-old rats were first fed a high-fat (HF) diet or a low-fat (LF) diet for 14 weeks. After that, GH or saline was administered to rat groups that were maintained on either HF or LF diets or that were switched from the HF to the LF diet. All 6 groups had free access to food. One additional saline group was pair-fed with the GH group that was switched from the HF to the LF diet. The caloric consumption of this latter group was also translated to yet another GH group receiving restricted amounts of the HF diet. GH was given in a total dose of 4 mg/kg/d for three weeks. After sacrifice, blood was collected and tissues were excised. In groups injected with saline, the weight of excised adipose tissue was 60 +/- 4.7, 41 +/- 3.8 and 50 +/- 4.5 g in animals that continued with the HF diet, LF diet, or that were switched from HF to LF, respectively. Corresponding figures after GH treatment were significantly (p < 0.05) decreased to 38 +/- 2.7, 30 +/- 2.3, and 31 +/- 2.7 g, respectively. Pair-feeding had no effect, whereas only 26 +/- 3.0 g of adipose tissue was retrieved in rats fed restricted amounts of HF diet while receiving GH. In this group, plasma insulin and leptin were also significantly (p < 0.05) depressed compared with other GH groups, especially to the group fed the unrestricted HF diet (203 +/- 35 vs. 1345 +/- 160 pmol/l and 9.3 +/- 1.2 vs. 31 +/- 4.4 micro g/l). In conclusion, this study shows that GH mediates breakdown of adipose tissue under a variety of dietary conditions, and that induction of hyperinsulinemia can be prevented if GH treatment is combined with restricted feeding of a diet which is relatively low in carbohydrates and rich in fat. This will also promote a fall of plasma leptin.  相似文献   

11.
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.  相似文献   

12.
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats.  相似文献   

13.
Liu X  York DA  Bray GA 《Peptides》2004,25(12):2171-2177
Ghrelin is a peptide produced by the stomach and released into the circulation. As a natural ligand of the growth hormone secretagogue (GHS) receptor, it stimulates growth hormone secretion but it also stimulates feeding in humans and rodents. The orexigenic effect of ghrelin has been related to AgRP/NPY and orexin pathways. We proposed that ghrelin might be involved in the susceptibility to diet induced obesity and in the regulation of macronutrient selection. We have investigated these hypotheses in two strains of rat, the Osborne–Mendel (OM) rat that prefers diets high in fat and is sensitive to dietary obesity and the S5B/P1 (S5B) rat that prefers a low fat diet and is resistant to high fat diet induced obesity.

OM and S5B rats were adapted to a choice of high fat (HF) and low fat (LF) diet for 2 weeks. GHRP-2, an analogue of ghrelin, was injected intraperitoneally into satiated and 24 h fasted rats at doses of 10, 30 and 90 nmol. Food intake was measured over the next 4 h period. In satiated S5B rats, GHRP-2 stimulated intake of the LF diet in a dose dependent manner but did not affect the intake of the HF diet. In satiated OM rats, 90 nmol of GHRP-2 stimulated HF intake. In contrast, neither fasted OM nor S5B rats increased the intake of either HF or LF diet in response to GHRP-2. Fasting for 18 h induced a large rise in ghrelin mRNA in stomach of OM rats but not in S5B rats. There were no significant differences in plasma total ghrelin. An increase in ghrelin mRNA in stomach immediately before the onset of the dark cycle was observed in OM but not in S5B rats. Active ghrelin level was significantly affected by different feeding conditions in both OM and S5B rats adapted on HF diet with a trend to increase after 48 h of fasting and to decline to basal levels following 10 h of refeeding. These data suggest that ghrelin stimulates the intake of the preferred macronutrient. In addition, a differential regulation of ghrelin gene expression between OM and S5B rats may be important in their differential sensitivity to HF diet-induced obesity.  相似文献   


14.
The effect of varying the amount and type of dietary fat on the promotion of gamma-glutamyltranspeptidase (GGT)-positive foci and hepatocarcinomas in female rats was studied. In the first study, two-thirds of the rats were first intubated with diethylnitrosamine (DEN, 10 mg/kg) 20 hr after partial hepatectomy; 1 week later, rats were fed one of three purified diets (a low-fat diet similar to the AIN-76 diet, a high saturated fat diet, or a high polyunsaturated fat diet) with or without 0.05% phenobarbital in the diet for 10 months. Increasing the fat level of the diet did not increase the number of GGT-positive foci arising spontaneously or induced by DEN alone. When phenobarbital was present in the diet, feeding the high polyunsaturated fat diet slightly increased the number of GGT-positive foci and the incidence of tumors. The low-fat diet, however, increased the incidence of fatty liver. We therefore reexamined the effect of diet on promotion by phenobarbital, using an additional low-fat diet with cornstarch rather than sucrose as the carbohydrate source. In this experiment, both high-fat diets slightly enhanced the induction of GGT-positive foci; the carbohydrate source had no effect. The incidence of tumors was not affected by diet in this experiment, but the incidence of fatty liver was again enhanced by feeding a diet high in sucrose. We conclude that increasing the fat level of the diet does not promote the development of DEN-initiated GGT-positive foci or carcinomas in female rats. Increasing the dietary fat level, however, may enhance promotion of liver foci by phenobarbital. Finally, increasing the sucrose content of the diet increases the incidence of fatty liver.  相似文献   

15.
High-fat diets (HFDs) are used frequently to study the development of cardiac dysfunction in animal models of obesity and diabetes. However, impairment in systolic function, often reported as declining ejection fraction, may not consistently occur in a given time frame which could be contributable to a variety of factors within the experimental design. One major factor may be the amounts of saturated and unsaturated fatty acids (FAs) that are present in the diet. To determine whether the FA content and composition were critical determinants in the development of cardiac dysfunction in response to high-fat feeding, we fed adult, male mice Western diet (45% fat, 60% saturated), Surwit diet (60% fat, 90% saturated), milk-fat-based diet (60% fat, 60% saturated) or high-fat Western diet (HFWD, 60% fat, 32% saturated) for 12 weeks. We report that neither the amount of total fat nor the ratio of saturated to unsaturated FAs in the diets differentially affects body weight and adiposity in mice. In addition, no evidence of systolic dysfunction is present after 12 weeks. Interestingly, the HFWD, with equal parts saturated, monounsaturated and polyunsaturated FAs, induces mild cardiac hypertrophy and diastolic dysfunction after 12 weeks, which coincides with elevated serum levels of arachidonic acid. Our results suggest that the dietary FA content and composition may be a primary determinant of diastolic, but not systolic, dysfunction in animal models of diet-induced obesity.  相似文献   

16.
Maternal overnutrition prior to and during gestation causes pronounced metabolic dysfunction in the adult offspring. However, less is known about metabolic adaptations in the offspring that occur independently of postnatal growth and nutrition. Therefore, we evaluated the impact of excess maternal dietary lipid intake on the in utero programming of body composition, hepatic function, and hypothalamic development in newborn (P0) offspring. Female mice were fed a low-fat (LF) or high-fat (HF) diet and were mated after 4, 12, and 23 wk. A subset of the obese HF dams was switched to the LF diet during the second (DR2) or third (DR3) pregnancies. The HF offspring accrued more fat mass than the LF pups, regardless of duration of maternal HF diet consumption or prepregnancy maternal adiposity. Increased neonatal adiposity was not observed in the DR3 pups. Liver weights were reduced in the HF offspring but not in the DR2 or DR3 pups. Offspring hepatic triglyceride content was reduced in the HF pups, but hepatic inflammation and expression of lipid metabolism genes were largely unaffected by maternal diet. Maternal diet did not alter the hypothalamic expression of orexigenic and anorexigenic neuropeptides in the offspring. Thus, the intrauterine programming of increased neonatal adiposity and reduced liver size by maternal overnutrition is evident in mice at birth and occurs prior to the development of maternal obesity. These observations demonstrate that dietary intervention during pregnancy minimizes the deleterious effects of maternal obesity on offspring body composition, potentially reducing the offsprings' risk of developing obesity and related diseases later in life.  相似文献   

17.
Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high protein content at the expense of carbohydrates (LC-HF-HP) causes differential effects on body weight and glucose homeostasis that depend on the integrity of brain melanocortin (MC) signaling. In vehicle-treated rats, switching from HC to either HF or LC-HF-HP feeding caused similar reductions in food intake without alterations in body weight. A reduced caloric intake (-16% in HF and LC-HF-HP groups) required to maintain or increase body weight underlay these effects. Chronic third cerebroventricular infusion of the MC receptor antagonist SHU9119 (0.5 nmol/day) produced obesity and hyperphagia with an increased food efficiency again observed during HF (+19%) and LC-HF-HP (+33%) feeding. In this case, however, HF feeding exaggerated SHU9119-induced hyperphagia and weight gain relative to HC and LC-HF-HP feeding. Relative to vehicle-treated controls, SHU9119 treatment increased plasma insulin (2.8-4 fold), leptin (7.7-15 fold), and adiponectin levels (2.4-3.7 fold), but diet effects were only observed on plasma adiponectin (HC and LC-HF-HP相似文献   

18.
Hypothalamic insulin inhibits food intake, preventing obesity. High-fat feeding with polyunsaturated fats may be obesogenic, but their effect on insulin action has not been elucidated. The present study evaluated insulin hypophagia and hypothalamic signaling after central injection in rats fed either control diet (15% energy from fat) or high-fat diets (50% energy from fat) enriched with either soy or fish oil. Soy rats had increased fat pad weight and serum leptin with normal body weight, serum lipid profile and peripheral insulin sensitivity. Fish rats had decreased body and fat pad weight, low leptin and corticosterone levels, and improved serum lipid profile. A 20-mU dose of intracerebroventricular (ICV) insulin inhibited food intake in control and fish groups, but failed to do so in the soy group. Hypothalamic protein levels of IR, IRS-1, IRS-2, Akt, mTOR, p70S6K and AMPK were similar among groups. ICV insulin stimulated IR tyrosine phosphorylation in control (68%), soy (36%) and fish (34%) groups. Tyrosine phosphorylation of the pp185 band was significantly stimulated in control (78%) and soy (53%) rats, but not in fish rats. IRS-1 phosphorylation was stimulated only in control rats (94%). Akt serine phosphorylation was significantly stimulated only in control (90%) and fish (78%) rats. The results showed that, rather than the energy density, the fat type was a relevant aspect of high-fat feeding, since blockade of hypothalamic insulin signal transmission and insulin hypophagia was promoted only by the high-fat soy diet, while they were preserved in the rats fed with the high-fat fish diet.  相似文献   

19.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

20.
The aim of the study was to determine, in rats of both sexes, the effect of HF diet feeding on the expression of adipokines involved in inflammatory status and insulin sensitivity and on the levels of proteins involved in lipid handling of retroperitoneal adipose tissue. Eight‐week‐old Wistar rats of both sexes were fed a control diet (2.9% w/w fat) or an HF diet (30% w/w fat) for 14 weeks. Adiponectin, peroxisome proliferator–activated receptor γ and inflammatory marker mRNA levels were analyzed by real‐time polymerase chain reaction. Levels of insulin receptor, glucose transporter 4, carnitine palmitoyltransferase 1, fatty acid synthase, hormone‐sensitive lipase and lipoprotein lipase were determined by Western blot. HF diet feeding did not induce hyperphagia or body weight gain but did promote an increase in adiposity although only in male rats. HF diet impaired glucose tolerance and the expression of inflammatory and insulin sensitivity markers in adipose tissue of male rats, but not in female rats. Male rats seem to be more prone to disorders associated with an unbalanced composition of the diet, even in the absence of hyperphagia. In contrast, female rats counteract excessive fat intake by improving their ability to use lipid fuels, which limits adiposity and maintains insulin sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号