首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Histogram comparison and meaningful statistics in flow cytometry is probably the most widely encountered mathematical problem in flow cytometry. Ideally, a test for determining the statistical equality or difference of flow cytometric distributions will identify the significant differences or similarities of the obtained histograms. This situation is of particular interest when flow cytometry is used to study the heterogeneity of axenic bacterial populations. We have statistically measured the heterogeneity of successive cytometric measures, the modifications produced after 20 transfers from the same culture, and the differences between 20 subcultures of identical origin. The heterogeneity of the bacterial populations and the similarity of the obtained 360 histograms were analysed by standard statistical methods. We have studied bacterial axenic cultures in order to detect, quantify and interpret their cytometric heterogeneity, and to assess intrinsic differences and differences produced by laboratory manipulations. We concluded that the standard axenic cultures have a considerable intrinsic cellular and molecular heterogeneity. We suggest that the heterogeneity we have detected basically has two origins: cell size diversity and cell cycle variations.  相似文献   

3.
A method for the flow cytometric determination of the unesterfied 3β-hydroxysterol content in yeast populations by the fluorescence shifted macrolide nystatin in presented. Preliminary investigations of changing sterol content in aerobic and anaerobic batch cultivation revealed the technological usefullness of this information.  相似文献   

4.
Flow cytometry is a powerful technique for the study of single cells, and thus it is of particular utility in the study of heterogeneity in microbial populations. This review seeks to highlight the role of flow cytometric analyses in studies of microbial heterogeneity, drawing wherever possible on recently published research articles. Whilst microbial heterogeneity is well documented in both natural and laboratory environments, the underlying causes are less well understood. Possible sources for the heterogeneity that is observed in microbial systems are discussed, together with the flow cytometric tools that aid its study. The role of flow cytometry in molecular biology is discussed with reference to gene reporter systems, which enable heterogeneity of gene expression to be monitored. With the recent sequencing of a variety of microbial genomes, it is anticipated that flow cytometry will have an increasing role to play in studying the effects of gene expression and mutation on heterogeneity, and in resolving the interactions of genetics and physiology.  相似文献   

5.
The cell-sorting capability of flow cytometers makes it possible to isolate specific populations of cells with pre-defined cytometric characteristics. A better knowledge of the biological effects of the sorting process is necessary for the future cell sorting applications. In this paper we report the effects of flow cytometric sorting on bacterial viability and exoproteolytic activity (EPA) of bacterial cultures and marine bacterioplankton. Sorting bacterial cultures and bacterioplankton samples reduce viability as assessed by plate counts and produce variations in the exoproteolytic activity. These effects indicate that deflected electrostatic sorting may significantly alter the biological properties of the sorted bacteria.  相似文献   

6.
AIMS: To monitor in real-time the changes in microbial populations and chemistry of grape juice simultaneously inoculated with Saccharomyces cerevisiae and Oenococcus oeni. METHODS AND RESULTS: Viable populations of S. cerevisiae and O. oeni in Chardonnay fermentations were identified and quantified using fluorescent dyes and fluorescently labelled antibodies in a flow cytometric assay. Fermentation chemistry was monitored using Fourier transform infrared (FTIR) spectroscopy, except for malic acid which was measured enzymatically. Malic acid utilization by O. oeni was greatest in the presence of the yeast Cepage. Growth of O. oeni was substantially slower in the presence of the yeast VL1. The three yeasts had similar fermentation rates in the presence and absence of O. oeni. CONCLUSIONS: Viable and nonviable yeast and bacterial populations can be rapidly discriminated in simultaneous malolactic-alcoholic wine fermentations using antibodies, fluorescent dyes and flow cytometry. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study using fluorescently labelled antibodies to discriminate and monitor yeast and bacterial populations in wine fermentations and offers a new approach to investigating microbial interactions in wine fermentations.  相似文献   

7.
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.  相似文献   

8.
Biologically available concentrations of individual dissolved amino acids in the open ocean are generally <1 nM. Despite this, the microbial turnover of amino acids is usually measured in hours indicating high demand. It is thought that the majority of uptake is due to bacterioplankton, although protists, particularly phototrophic protists, are also expected to take up amino acids. In order to assess the ability of protists to compete with prokaryotes for amino acids at subnanomolar concentrations, we examined the direct uptake of 3H-leucine by phototrophic nanoflagellates (prasinophytes, pelagophytes and trebouxiophytes) and by associated bacteria using flow cytometric cell sorting. In contrast to 3H-leucine-assimilating bacterial copopulations, none of the six studied nanoflagellates showed measurable direct uptake of 3H-leucine, suggesting that the studied phototrophic protists were unable to utilize dissolved 3H-leucine at natural oceanic concentrations. More practically, the flow-sorting technique allowed rapid and unequivocal differentiation of organic nitrogen uptake between prokaryotic cells and eukaryotic cells in mixed microbial populations, reducing the need to establish and maintain axenic algal cultures.  相似文献   

9.
Measuring the physiological heterogeneity of natural and industrial microbial populations is essential to studying, modelling and monitoring of microbial populations. It was discovered that populations of Escherichia coli and Bacillus megaterium growing in medium with ethanol as an external source of energy have two actively respiring but physiologically different subpopulations. Cells of one subpopulation have negligibly low alcohol dehydrogenase (ADH) activity (ADH-L cells) and cells of the other have high ADH activity (ADH-H cells). The subpopulation of ADH-H bacterial cells was measured using 10 min incubations of cells in a 1% solution of allyl alcohol for fast selective killing of cells with high activity of ADH and flow cytometry detection of dead cells after this incubation. The content of ADH-H cells during exponential phase of batch culture varied from 9 % to 90 % and lowered to zero for a few hours during starvation of the population. ADH-L cells are actively respiring cells and not depolarized cells. The simultaneous presence of ADH-L and ADH-H cells growing in the medium with ethanol can be explained by the fact that ADH-H cells oxidize actively external ethanol whereas ADH-L cells oxidize only intracellular storage carbohydrates. The method for enumeration of cells with high ADH activity can be used to monitor the heterogeneity of bacterial populations consuming ethanol as a sole source of carbon and energy.  相似文献   

10.
Syncytium formation between HUT-78 cells persistently infected with human immunodeficiency virus type 1 (HIV-1) and uninfected CD4-bearing MOLT-4 or CEM cells results in a rapid destruction of the MOLT-4 or CEM cells. This syncytium formation is due to the interaction between the gp120 glycoprotein expressed by the persistently HIV-1-infected HUT-78 cells and the CD4 receptor present on MOLT-4 or CEM cells. A flow cytometric method has been applied to separate the infected (HUT-78) from the uninfected (MOLT-4, CEM) cell populations. This method is based on a modified DNA staining protocol which clearly shows the differences in DNA content between HUT-78 cells, on the one hand, and MOLT-4 or CEM cells, on the other hand. Using this flow cytometric method we have demonstrated that those compounds (i.e., sulfated polysaccharides, aurintricarboxylic acid) that interact with gp120 (of the HIV-infected cells) or CD4 (of the uninfected cells) suppress syncytium formation and concomitant destruction of the CD4+ cells.  相似文献   

11.
The accumulation of cytoplasmic polyhydroxyalkanoates (PHAs) and the heterogeneity of bacterial populations were analysed by flow cytometry and SYTO-13 and Nile red staining in rhamnolipid-producing Pseudomonas aeruginosa cultures grown in waste frying oil as carbon source. A combination of SYTO-13 and Nile red fluorescence with cytometric forward and side scatter values may allow increases in the final production of polyhydroxyalkanoates (PHA) by two basic mechanisms: (i) rapid assessment of polyhydroxyalkanoate content and (ii) definition of flow cytometric cell sorting protocols to select high polyhydroxyalkanoate (PHA)-producing strains. We report a rapid (less than 30 min) flow cytometric assessment of PHAs in Pseudomonas aeruginosa 47T2 following Nile red staining: (i) to estimate cellular PHAs content; (ii) to study heterogeneity of the batch cultures producing PHAs and (iii) to establish the basis for sorting sub-populations with a high capacity to accumulate PHAs.  相似文献   

12.
A method was developed to study plasmid stability in Escherichia coli cells, which utilised the high speed analysis properties of flow cytometry. To discriminate between plasmid-harbouring cells and plasmid-free cells a plasmid-encoded Lac repressor protein was used to regulate the expression of a chromosomally inserted green fluorescent protein gene in the host cells. Flow cytometric analysis enabled detection and quantification of plasmid-free cells due to their green fluorescent phenotype. The reported system offers real-time analysis in combination with a very low detection level of plasmid loss in bacterial populations. This could be useful in future investigations of plasmid stability and population selection in bacterial communities.  相似文献   

13.
AIMS: The present study describes a flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk according to the main cause of elevated counts. METHODS AND RESULTS: A total of 75 Danish bulk tank milk samples exceeding the grading level of 3.0 x 10(4) CFU ml(-1) were examined by both flow cytometry and traditional microbiological analyses. The correlation coefficient (r) between the two methods was 0.71. For the differential analyses of the dominant bacterial populations four different parameters were used to give a species-characteristic pattern. The four parameters were as follows: staining with Oregon Green conjugated wheat germ agglutinin that binds to the cell wall of bacteria, staining with hexidium iodide that binds to all bacterial DNA, the flow cytometric forward scatter and the flow cytometric side scatter. Three regions in the flow cytometric plot were defined: region 1 includes bacteria mainly associated with poor hygiene, region 2 includes psychrotrophic hygiene bacteria and region 3 includes bacteria mainly related to mastitis. The ability of the flow cytometric technique to predict the main cause of elevated bacterial counts on routine samples was examined. Comparing these results with results obtained by traditional microbiological analyses for identification showed that for 81% of the samples the two techniques agreed on the main cause of an elevated bacterial count. CONCLUSIONS: The ability of the presented flow cytometric technique to enumerate and differentiate bacteria in bulk tank milk according to the main cause of elevated counts was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: This study described the first step in development of a technique suitable for routine analyses of bulk tank milk samples. A technique indicating the main cause of an elevated count will enable the farmer to eliminate the contamination source within a short time limit.  相似文献   

14.
A model is proposed for enzymatic lysis of microbial cells based on number balances over the distribution of cell-wall mass in a population of cells. Analytical solutions to the population balance equations were obtained by the method of characteristics for simple reaction kinetics. The model has been used to analyze the following cases of lysis in a nonhomogeneous cell population: wall hydrolysis with cell rupture and product release, the effect of a distribution of lysis rates, and lysis of two-layer cell walls. Rate expressions for the reactions of lysis can be derived from bulk-phase experiments; the distributions of cell size and product content can be measured independently by flow cytometric techniques. The population model also provides an explanation for the initial lag seen in lysis kinetics for virtually any initial distribution. The model demonstrates patterns of lysis and product recovery for heterogeneous populations of cells and also applies to the more general problem of soluble-enzyme reactions with heterogeneous solid substrates.  相似文献   

15.
The heterogeneous nature of the small intestine and the lack of methods to obtain pure crypt populations has, in the past, limited the application of standard flow cytometric analysis for cytokinetic studies of the proliferating crypts. We describe a flow cytometric technique to discriminate crypt and villus cells in an epithelial cell suspension on the basis of cell length, and to measure the DNA content of the discriminated subpopulations. Our data indicate that bivariate analysis of a mixed epithelial cell suspension can be used to distinguish mature villus cells, G1 crypt cells, and S-phase crypt cells. In addition, continuous labeling studies suggest that the position of a cell on the cell length axis reflects epithelial cell maturity. We applied this flow cytometric technique to determine the cytokinetic nature of epithelial cells obtained by sequential digestion of the small intestine.  相似文献   

16.
Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.  相似文献   

17.
The correlation between flow cytometric ploidy investigation and classic chromosome analysis was studied in 32 human colorectal tumors. Flow cytometry was performed by nuclei isolation and DNA staining with ethidium bromide. Chromosome analysis was done after incubation with colcemid. In 12 cases, chromosome identification was possible by grouping according to the Denver system or by Q-banding. Generally, the measured DNA content corresponded well with the content expected from chromosome analysis, giving an average difference of 4%. In nine tumors, the measured DNA content was 4-18% higher than expected. Some of these discrepancies could be due to difficulties in identifying the corresponding cell populations in heterogeneous tumors. However, in general the number of cell populations and their quantitative representation by the two methods were statistically well correlated. The results indicate that flow cytometric ploidy investigation of colorectal tumors with the present technique is a reliable method, but also that a combination of both techniques may yield additional information about tumor cytogenetics.  相似文献   

18.
Heterotrophic nanoflagellates (HNFs) are an essential component of all aquatic microbial food webs, and yet the exploration of the numerical and single‐cell responses of these organisms in mixed assemblages still represents a major technical challenge. LysoTracker Green staining combined with flow cytometry was recently proposed for the enumeration of aquatic HNFs. Here we show that LysoTracker Green not only allows the enumeration of HNFs in estuarine samples with a wide range of HNF abundances, but also allows the discrimination of distinct HNF populations in mixed assemblages. In addition, the resulting cytometric parameters can be used to characterize cell size and the level of activity of the cells in the different populations that are detected. LysoTracker Green accumulates preferentially in lysosomes, and we demonstrate that the green fluorescence emission from HNF cells stained with LysoTracker strongly correlates with cell‐specific β‐glucosaminidase (β‐Gam) activity, a key digestive enzyme of lysosomal origin in eukaryotic cells. Our results further show that different populations that develop in estuarine regrowth cultures are characterized by different intrinsic ranges of size and of feeding activity, and that there is a wide range of single‐cell responses within these HNF populations. We found a large degree of uncoupling between cell size and feeding activity, both between and within HNF populations, and there appears to be no clear allometric scaling of feeding activity. We were able to reconstruct the succession of distinct HNF populations that developed during the regrowth experiments, and explore the complex interactions that occurred between numerical (change in abundance of the cytometric populations) and single‐cell HNF responses.  相似文献   

19.
Abstract. DNA synthesis in rat hepatocytes, from livers regenerating after 70% hepatectomy, was assessed by flow cytometric determination of nuclear DNA content and by incorporation of [3H]thymidine. Parenchymal liver cells were isolated by collagenase perfusion and low-speed centrifugation. Nuclei from the isolated cells were prepared for flow cytometry by a treatment with detergent, pepsin and RNase, and stained with ethidium bromide. Parallel samples of cells were incubated with [3H]thymidine and analysed for rate of incorporation of radioactivity into DNA and for labelling index determination.
The flow cytometric measure of the replicative response, i.e. the presence of cells with S-phase DNA content within the diploid and tetraploid cell populations, was compared with the incorporation of [3H]thymidine. For each of fourteen animals, including two control rats and twelve partially hepatectomized animals killed either before (at 13 hr after hepatectomy), at the onset (16 and 18 hr) or at the peak (24 hr) of regenerating activity, a fairly good correlation was found between the different methods. Satisfactory resolution of the flow cytometric detection of S-phase cells was indicated by a sorting experiment using an Ortho (system 50-H) cell sorter which demonstrated that after [3H]thymidine injection in vivo 88% of the diploid and 84% of the tetraploid S-phase nuclei were labelled, while labelling in the G1-fractions was only 2 and 7%, respectively.  相似文献   

20.
Complement-mediated killing of bacteria was monitored by flow cytometric, luminometric, and conventional plate counting methods. A flow cytometric determination of bacterial viability was carried out by using dual staining with a LIVE/DEAD BacLight bacterial viability kit. In addition to the viable cell population, several other populations emerged in the fluorescence histogram, and there was a dramatic decrease in the total cell count in the light-scattering histogram in the course of the complement reaction. To permit luminometric measurements, Bacillus subtilis and Escherichia coli were made bioluminescent by expressing an insect luciferase gene. Addition of substrate after the complement reaction resulted in bioluminescence, the level of which was a measure of the viable cell population. All three methods gave essentially the same killing rate, suggesting that the bacteriolytic activity of serum complement can be measured rapidly and conveniently by using viability stains or bioluminescence. In principle, any bacterial strain can be used for viability staining and flow cytometric analysis. For the bioluminescence measurements genetically engineered bacteria are needed, but the advantage is that it is possible to screen automatically a large number of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号