首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Larvae of the tephritid fly Eurosta solidaginis induce ball-shaped galls on the stem of tall goldenrod, Solidago altissima. Survival probability depends on gall size; in small galls the larva is vulnerable to parasitoid oviposition, whereas larvae in large galls are more frequently eaten by avian predators. Fly populations from 20 natural old fields in central Pennsylvania were monitored in 1983 and 1984 to examine the distribution of the selection intensity imposed by natural enemies, the parasitoids Eurytoma gigantea and E. obtusiventris, the inquiline Mordellistena unicolor, and the predatory birds Dendrocopus pubescens and Parus atricapillus. Mordellistena and E. obtusiventris are able to attack galls of all diameters while E. gigantea and the predatory birds preferentially assaulted small and large diameter galls, respectively. Eurosta in intermediate sized galls had the highest survivorship, hence selection had a stabilizing component. However, parasitoid attack was more frequent than bird attack, and the two did not exactly balance, thus there was also a directional component. The mean directional selection intensity on gall size was 0.21 standard deviations of the mean, indicating that larger gall size was favored. Interactions among the insect members of the Eurosta natural enemy guild are complex and frequent.  相似文献   

2.
The geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S. a. gilvocanescens. We measured selection on E. solidaginis gall size and shape in the prairie and forest biomes in Minnesota and North Dakota over an 11-year period. Galls were larger and more spherical in the prairie than in the forest. We supported the hypothesis that the divergence in gall morphology in the two biomes is due to different selection regimes exerted by natural enemies of E. solidaginis. Each natural enemy exerted similar selection on gall diameter in both biomes, but differences in the frequency of natural enemy attack created strong differences in overall selection between the prairie and forest. Bird predation increased with gall diameter, creating selection for smaller-diameter galls. A parasitic wasp, Eurytoma gigantea, and Mordellistena convicta, an inquiline beetle, both caused higher E. solidaginis mortality in smaller galls, exerting selection for increased gall diameter. In the forest there was stabilizing selection on gall diameter due to a combination of bird predation on larvae in large galls, and M. convicta- and E. gigantea-induced mortality on larvae in small galls. In the prairie there was directional selection for larger galls due to M. convicta and E. gigantea mortality on larvae in small galls. Mordellistena convicta-induced mortality was consistently higher in the prairie than in the forest, whereas there was no significant difference in E. gigantea-induced mortality between biomes. Bird predation was nonexistent in the prairie so the selection against large galls found in the forest was absent. We supported the hypothesis that natural enemies of E. solidaginis exerted selection for spherical galls in both biomes. In the prairie M. convicta exerts stabilizing selection to maintain spherical galls. In the forest there was directional selection for more spherical galls. Eurytoma gigantea exerted selection on gall shape in the forest in a complex manner that varied among years. We also supported the hypothesis that E. gigantea is coevolving with E. solidaginis. The parasitoid had significantly longer ovipositors in the prairie than in the forest, indicating the possibility that it has evolved in response to selection to reach larvae in the larger-diameter prairie galls.  相似文献   

3.
Environmental catastrophes, such as severe drought, can reduce host-plant quality and/or abundance, which in turn decrease levels of herbivore populations. Such changes in herbivore populations affect populations of their natural enemies. As part of a long-term field experiment (1983–1991), galls of Eurosta solidaginis from 16 fields in central Pennsylvania were systematically collected from goldenrod ramets. Galls were dissected to compare the occurrence of E. solidaginis mortality caused by its natural enemies in 2 drought years (1988, 1991) with 5 pre-drought years (1983–1987) and 2 post-drought years (1989–1990). Gall diameters were significantly smaller in both drought years and early larval death significantly decreased E. solidaginis survivorship in the first drought year. Of the natural enemies, the parasitoid wasp Eurytoma gigantea caused significant selection for larger gall size in all pre-drought years, the 1991 drought, and both post-drought years, due to its differential attack of smaller galls. In spite of drought-induced small gall size in 1988, there was negligible selection on gall size by natural enemies. However, populations of E. solidaginis did suffer local extirpations at nine of the 16 fields during the first drought year and population recoveries of the gall inducer and natural enemies varied among fields in the post-drought years. As a consequence of reduced herbivore abundance in drought and post-drought years, some natural-enemy populations were absent. Drought therefore drastically reduced the abundance of E. solidaginis and natural enemies resulting in slow recoveries to pre-drought numbers. Received: 16 April 1998 / Accepted: 4 August 1998  相似文献   

4.
Summary Under a restricted set of conditions, predator-prey or parasite-host systems may exhibit an escalating arms race over several generations that is not coevolutionary. Preconditions for such a process include high correlation between prey/host quality and defensive capability, and phenotypic plasticity in predator/parasite-counter defenses that responds to quality. We present simulation models based on the parasitoid waspEurytoma gigantea, which lays its egg in the goldenrod gall induced by the flyEurosta solidaginis. For the parasitoid to successfully lay an egg, the gall walls must be thinner than the parasitoid's ovipositor is long. Wall thickness is highly correlated with gall size, so probability of successful attack declines with gall size. However, since the parasitoid eats the gall tissue, individuals developing in small galls have little food and mature with shorter ovipositors than those which develop in large galls. The simulation showed that the population mean parasitoid size is set by mean gall size. Since small galls are more frequently parasitized, there is a selection pressure on the gallmaker to induce larger galls. But, an additional simulation showed that since parasitoid ovipositor length depends on gall size, an evolutionary increase in gall size will also result in a non-evolutionary increase in parasitoid body size and ovipositor length over several generations.  相似文献   

5.
Natural fluctuations in environmental conditions are likely to induce variation in the intensity or direction of natural selection. A long-term study of the insect, Eurosta solidaginins Fitch (Diptera; Tephritidae), which induces stem galls on the perennial herb Solidago altissima (Asteraceae) was performed to explore the patterns of variation in phenotypic selection. The intensity of selection imposed by parasitoids and predators on gallmaking larvae, for gall size, was measured across 16 populations over the course of 4 generations, for a total of 64 population-generations. Directional selection was quantified by i, the selection intensity, and variance selection by j‘, a measure of the intensity of selection on phenotypic variance. Size-dependent attack by parasitoids caused upward directional selection (mean ip = 0.42; SE = 0.023), while size-dependent bird attack favored larvae that induced smaller galls (mean ib = -0.07; SE = 0.013. The mean net directional selection intensity was 0.35 (SE = 0.030), which indicates that insects inducing larger galls are generally favored by selection. The opposing patterns of size-dependent attack resulted in stabilizing selection in half the population generations, with an overall average. j‘ of -0.11 (SE = 0.078). The magnitude of directional selection was strongly influenced by the population mean gall size and weakly by the optimal gall size. The intensity of variance selection was strongly influenced by the shape of the fitness function, with sigmoidal and Gaussian-like shapes causing greater depletion of phenotypic variance.  相似文献   

6.
Urbanization is an important component of global change. Urbanization affects species interactions, but the evolutionary implications are rarely studied. We investigate the evolutionary consequences of a common pattern: the loss of high trophic‐level species in urban areas. Using a gall‐forming fly, Eurosta solidaginis, and its natural enemies that select for opposite gall sizes, we test for patterns of enemy loss, selection, and local adaptation along five urbanization gradients. Eurosta declined in urban areas, as did predation by birds, which preferentially consume gallmakers that induce large galls. These declines were linked to changes in habitat availability, namely reduced forest cover in urban areas. Conversely, a parasitoid that attacks gallmakers that induce small galls was unaffected by urbanization. Changes in patterns of attack by birds and parasitoids resulted in stronger directional selection, but loss of stabilizing selection in urban areas, a pattern which we suggest may be general. Despite divergent selective regimes, gall size did not very systematically with urbanization, suggesting but not conclusively demonstrating that environmental differences, gene flow, or drift, may have prevented the adaptive divergence of phenotypes. We argue that the evolutionary effects of urbanization will have predictable consequences for patterns of species interactions and natural selection.  相似文献   

7.
Simulation models presented here show that gall size of Eurosta solidaginisFitch (Diptera: Tephritidae) is a reliable predictor of its quality as a host to the parasitoid Eurytoma giganteaWalsh (Hymenoptera; Eurytomidae). The nutritional value of a gall to a parasitoid increases with diameter, but so does the likelihood that ovipositing parasitoids will fail to penetrate to the gall's central chamber. Despite the large differences in gall quality with size, this parasitoid seems incapable of distinguishing large, impenetrable galls from smaller, more suitable ones (Weis, A. E., et al., Ecol. Entomol. 10:341–348, 1985). This paper shows that Eurytomais capable of quick rejection of nonhost galls of similar size and shape to suitably sized host galls. Several lines of reasoning are explored to understand the seemingly maladaptive lack of sizediscrimination ability on host galls.  相似文献   

8.
Abstract. 1. Eurytoma gigantea Walsh is a specialist parasitoid of the tephritid gallmaker Eurosta solidaginis (Fitch).
2. In the natural environment the incidence of parasitism by Eurytoma is greater in small galls than in large ones.
3. Laboratory experiments demonstrated that small galls are not more frequently discovered; however, oviposition attempts on small galls were more likely to be successful.
4. Eurytoma spends much time probing galls too big to penetrate; this leads to a decrease in foraging efficiency when many large galls are present.
5. The chance of successfully penetrating a gall depends on the thickness of the gall wall and the length of the parasitoid's ovipositor.
6. A simulation model was constructed which shows that a gallmak-er's chance of being parasitized depends on gall size, the number of parasitoids that discover the gall, and their ovipositor lengths.  相似文献   

9.
The role of natural-enemy escape in a gallmaker host-plant shift   总被引:2,自引:0,他引:2  
The successful colonization of novel host-plant species by herbivorous insects may be facilitated by a reduction in natural-enemy attack on insect populations associated with the novel (derived) host plant. This is particularly true if natural enemies use host-plant or habitat cues in searching for their herbivore prey. In order to test whether the acquisition of enemy-free space could have influenced the host shift in the goldenrod ball gallmaker, Eurosta solidaginis, we estimated levels of natural-enemy attack in 25 host-race populations associated with Solidago altissima and S. gigantea (Compositae) spanning the zone of sympatry between S. altissima and S. gigantea host races in New England. Mortality due to attack by the parasitoid wasp Eurytoma obtusiventris was significantly higher for the ancestral than for the derived host race (30.5% versus 0.4%) across the transect, which is consistent with the enemy escape hypothesis. Contrary to this hypothesis, mordellid beetles caused significantly higher mortality on the derived than ancestral host race (17.1% versus 2.6%). Mortality by a second parasitoid wasp and birds showed no significant differences between the two host races. Overall, the derived host race had significantly higher survivorship across the transect (36.6% versus 20.8%). An analysis of survivorship and parasitoid mortality levels from sympatric sites in this study and previous studies showed a highly significant correlation between the levels of Eurytoma obtusiventris attack and the survivorship advantage of the derived host race. Observations of this parasitoid's searching behavior confirmed that it preferentially searches the ancestral host for fly larvae. Current patterns of host-race mortality and naturalenemy behavior and abundance are consistent with the facilitation of the host shift by escape from a specialist parasitoid.  相似文献   

10.
Parasitism may explain the patchy distributions of host populations. The present paper is a study of larval distributions of the parasitoid Eurytoma robusta in galls of the tephritid gall fly Urophora cardui. It focuses on E. robusta's choice of U. cardui gall and whether this changes relative to the rate of parasitism. Oviposition patterns were inferred by direct counts of larvae in galls and genetically, for both species, using indirect relatedness estimates between gall‐members. Furthermore, rates of parasitism in four populations were monitored for 4 years. The modal distribution of E. robusta larvae per gall was one and independent of the level of parasitism. The mean number of E. robusta per gall did not differ from Poisson distributions at different parasitism rates. We were not able to demonstrate a parasitoid preference for gall size. In contrast, parasitoids may have a negative effect on gall growth. Relatedness estimates showed that E. robusta gall members were often unrelated, whereas U. cardui were siblings. Thus, larval distributions of E. robusta suggest that oviposition behaviour is generally constrained and density independent. In four populations monitored over 4 years, parasitism was initially high (up to 70%), but suddenly declined with no apparent effect on fly (gall) abundance.  相似文献   

11.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

12.
1. For herbivorous insects, the incorporation of a novel host into the diet, and subsequent formation of distinct host associations (races), is thought to be a significant early step in the speciation process. While many studies have addressed this issue, virtually nothing is known about the evolutionary response of natural enemies to herbivore host‐race formation. 2. The hypothesis that the parasitoid wasp Eurytoma gigantea (Hymenoptera: Eurytomidae) has formed host races in direct response to the host shift and subsequent host‐race formation by its host, the gallmaker Eurosta solidaginis (Diptera: Tephritidae) was tested. Emergence time, mating preference, and female oviposition preference were determined for parasitoids derived from galls of each Eurosta host race. 3. Male and female E. gigantea overlap broadly in their emergence times from each Eurosta host race, suggesting that there is no phenological barrier to gene flow. 4. In choice experiments, female parasitoids did not mate assortatively: females that emerged from one Eurosta host race were equally likely to mate with males from either Eurosta host race. 5. Oviposition behaviour experiments revealed that female parasitoids do not prefer to oviposit on their host race of origin and that there is no overall preference for one host race, even though fitness is higher when parasitoids are reared from Eurosta galls of the Solidago gigantea host race than when reared from Eurosta galls of the Solidago altissima host race. 6. These results suggest that E. gigantea has not diverged in parallel with its host in response to the herbivore host‐plant shift. Further studies are needed before the ubiquity of this diversification mechanism can be evaluated fully.  相似文献   

13.
Associational resistance mediated by natural enemies   总被引:1,自引:0,他引:1  
Abstract.  1. Associational resistance theory suggests that the association of herbivore-susceptible plant species with herbivore-resistant plant species can reduce herbivore density on the susceptible plant species. Several casual mechanisms are possible but none has so far invoked natural enemies. Associational resistance mediated by natural enemies was tested for by examining densities of a gall fly, Asphondylia borrichiae (Diptera: Cecidomyiidae), and levels of parasitism on two closely related seaside plants, Borrichia frutescens and Iva frutescens , when alone and when co-occurring.
2. Both Borrichia and Iva grow alone or together on small offshore islands in Florida. Each host plant species has its own associated race of fly, but both races of fly are attacked by the same four species of parasitoids. Borrichia normally has a higher density of galls than Iva , and galls are larger on Borrichia than on Iva .
3. Gall size, gall abundance, parasitism levels, and parasitoid community composition were quantified on both Borrichia and Iva on islands where each species grew alone or together. Some islands were then manipulated by adding Borrichia to islands supporting only Iva , and by adding Iva to islands supporting only Borrichia . Subsequent gall densities and gall parasitism levels on the original native species were then examined.
4. On both natural and experimentally manipulated islands, gall densities on Iva were significantly lowered by the presence of Borrichia . This is because bigger parasitoid species that were common on Borrichia galls, which are bigger, spilled over and attacked the smaller Iva galls. Thus, parasitism rates on Iva were higher on islands where Borrichia co-occurred than on islands where Borrichia were absent. Most parasitoids from Iva were too small to successfully attack the large Borrichia galls and so gall density on Borrichia was unaffected by the presence of Iva .  相似文献   

14.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

15.
Abstract.  1. The relationship between gall size and mortality of the willow pinecone gall midge Rabdophaga strobiloides (Diptera: Cecidomyiidae) was examined by determining the fate of all galls in a 30-ha area in central Alberta, Canada over 4 years. It was found that gall size has a large effect on the type and intensity of mortality experienced by the gall midge, and consequently this factor has the potential to influence the dynamics of the host–parasitoid interaction through the creation of phenotypic refuges.
2. Total midge mortality ranged from 51% to 78% over the course of the study and was dominated by parasitism by Torymus cecidomyiae (Hymenoptera: Torymidae) and Gastrancistrus sp. (Hymenoptera: Pteromalidae) as well as predation by birds. Gall size had a strong, non-linear effect on the attack rates of each of these natural enemies.
3. Birds attacked the smallest size classes. Torymus cecidomyiae preferentially attacked medium diameter galls and thus avoided predation by birds in smaller galls. Gastrancistrus sp. preferentially attacked the largest galls and consequently suffered lower rates of predation by both T. cecidomyiae and birds.
4. This study emphasises the importance of understanding the interactions among mortality factors in order to describe adequately the susceptibility of R. strobiloides to parasitism and predation, and ultimately its population dynamics.  相似文献   

16.
Complex interactions within multitrophic communities are fundamental to the evolution of individual species that reside within them. One common outcome of species interactions are fitness trade‐offs, where traits adaptive in some circumstances are maladaptive in others. Here, we identify a fitness trade‐off between fecundity and survival in the cynipid wasp Callirhytis quercusbatatoides that induces multichambered galls on the stem of its host plant Quercus virginiana. We first quantified this trade‐off in natural populations by documenting two relationships: a positive association between the trait gall size and fecundity, as larger galls contain more offspring, and a negative association between gall size and survival, as larger galls are attacked by birds at a higher rate. Next, we performed a field‐based experimental evolution study where birds were excluded from the entire canopy of 11 large host trees for five years. As a result of the five‐year release from avian predators, we observed a significant shift to larger galls per tree. Overall, our study demonstrates how two opposing forces of selection can generate stabilizing selection on a critical phenotypic trait in wild populations, and how traits can evolve rapidly in the predicted direction when conditions change.  相似文献   

17.
We examined seasonal patterns of gall morphology, growth, and survivorship of the agamic generation of a cynipid wasp, Aphelonyx glanduliferae, and discussed its mortality factors, especially from the point of view of refuge from parasitoid attack. Although the initiation period varied greatly among individual galls, the larvae of A. glanduliferae grew rapidly and reached their maximum size within 3 weeks before pupating in late September to early October. This growth period corresponded to the period when the gall walls became thinner. Parasitoid attack, which was the principal factor in the mortality of A. glanduliferae in the tree crown, was concentrated around the pupation period of the cynipid. Gall walls were significantly thinner in galls attacked by parasitoids than in those still containing a living cynipid. Therefore, the period available to parasitoids seems to be limited by both gall wall thickness and cynipid size. Thus, the growth pattern of A. glanduliferae larvae can have significance in that it narrows the window of vulnerability to parasitoids to a particular period. Although delaying gall initiation will also shorten the exposure period to parasitoid attacks, it was likely to increase the risk of death from gall abortion caused by seasonal degradation in the quality of host plant tissues. Although many cynipids were killed by disease in the galls that fell to the ground, the falling of mature galls to the ground may be another way to a parasitoid-free space. It is thus suggested that a trade-off among life history traits against multiple factors operates in the refuge of A. glanduliferae from parasitoid attack. Received: May 15, 2001 / Accepted: February 1, 2002  相似文献   

18.
1. The importance of host‐race formation to herbivorous insect diversity depends on the likelihood that successful populations can be established on a new plant host. A previously unexplored ecological aid to success on a novel host is better nutritional quality. The role of nutrition was examined in the shift of the stem‐boring beetle Mordellistena convicta to fly‐induced galls on goldenrod and the establishment there of a genetically distinct gall host race. 2. First, larvae of the host race inhabiting stems of Solidago gigantea were transplanted into stems and galls of greenhouse‐grown S. gigantea plants. At the end of larval development, the mean mass of larvae transplanted to galls was significantly greater than the mass of larvae transplanted to stems, indicating a likely nutritional benefit during the shift. This advantage was slightly but significantly diminished when the gall‐inducing fly feeding at the centre of the gall died early in the season. Additionally, there was a suggestion of a trade‐off in the increased mortality of smaller beetle larvae transplanted into galls. 3. In a companion experiment, S. gigantea gall‐race beetle larvae were likewise transplanted to S. gigantea stems and galls. Besides the expected greater mass in galls, the larvae also exhibited adaptations to the gall nutritional environment: larger inherent size, altered tunnelling behaviour, and no diminution of mass pursuant to gall‐inducer mortality. 4. In a third line of inquiry, chemical analyses of field‐collected S. gigantea plants revealed higher levels of mineral elements important to insect nutrition in galls as compared with stems.  相似文献   

19.
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts'' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.  相似文献   

20.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号