首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

2.
Several recent theoretical considerations of mating-system evolution predict within-population covariation between levels of inbreeding depression and genetically controlled mating-system characters. If inbreeding depression is caused by deleterious recessive alleles, families with characters that promote self-pollination should show lower levels of inbreeding depression than families with characters that promote outcrossing. The converse is expected if inbreeding depression is due to overdominant allelic interactions. Whether these associations between mating-system and viability loci evolve will have important consequences for mating-system evolution. The evolution of selfing within the genus Mimulus is associated with a reduction in stigma-anther separation (i.e., a loss of herkogamy) and high autogamous seed set. In this study we compared families from two M. guttatus populations that differed genetically in their degree of stigma-anther separation. In one of these populations we also compared families that differed genetically in the degree to which they autogamously set seed in a pollinator-free greenhouse. Dams often differed significantly in levels of inbreeding depression for aboveground biomass and flower production, but variation in inbreeding depression was never explained by herkogamy class or autogamy class. Several factors might account for why families with traits associated with selfing did not show lower inbreeding depression, and these are discussed. Our study also demonstrated significant variation among self progeny from a given female likely due to differences in pollination date and position of fruit maturation. The detection of significant dam × sire interactions suggests biparental inbreeding or differences in combining ability for specific pairs of parents.  相似文献   

3.
In mixed-mating plant populations, one can estimate the relative fitness of selfed progeny w by measuring the inbreeding coefficient F and selfing rate s of adults of one generation, together with F of adults in the following generation (after selection). In the first application of this multigenerational method, we estimated F and s for adults over three consecutive generations in adjacent populations of two annual Mimulus taxa: the outbreeding M. guttatus and the inbreeding M. platycalyx. This gave estimates of w for the last two generations. Although average multilocus selfing rates were high in both taxa (0.63 in M. guttatus; 0.84 in M. platycalyx), the relative fitness of selfed progeny averaged only 0.19 in M. guttatus and 0.32 in M. platycalyx. An alternative estimator for w that incorporates biparental inbreeding gave even lower estimates of w. These values are significantly below the 0.5 threshold thought to favor selfing, and show that partially selfing populations can harbor substantial genetic load. In accordance with the purging hypothesis, the more highly selfing M. platycalyx showed marginally lower inbreeding depression than M. guttatus in both years (P = 0.08). Inbreeding depression and selfing rates also varied among years in concert among taxa. Several sources of bias are discussed, but computer simulations indicate it is unlikely that w is biased downwards by linkage of marker loci to load loci.  相似文献   

4.
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. However, some self-fertilization should weaken the harmful effects of inbreeding by exposing deleterious alleles to selection. This study examines the maintenance of inbreeding depression in the predominantly outcrossing species Pinus sylvestris L. (Scots pine). Open-pollinated and self-fertilized progeny of 23 maternal trees, originating from a natural stand in southern Finland, were grown at two sites. We observed significant inbreeding depression in two of the four life stages measured. Inbreeding depression was largest for seed maturation (δ = 0.74), where seedset in open-pollinated strobili (70.9%) was about four times higher than in selfed strobili (18.3%). Inbreeding depression in postgermination survival (upto an age of 23 years) was also high (δ = 0.62–0.75). No significant differences in height (δ = 0.05) or flowering (δ = 0.14) of the trees after 23 years were observed. Cumulative inbreeding depression was high (δ = 0.90–0.94) and differed significantly among maternal families (range 0.45–1.00). The magnitude of inbreeding depression among the 23 maternal parents was not significantly correlated between early (seed maturation) and later (postgermination survival) life stages, suggesting that its genetic basis varies across the life cycle. Size differences among the progeny types diminished in time due to nonrandom size-specific mortality, causing a decrease in the inbreeding depression estimates for height over time. Our results indicate that Scots pine exhibits high levels of inbreeding depression during both early and later stages of the life cycle. It is argued that self-fertilization in Scots pine is inefficient in purging the genetic load caused by highly deleterious mutations because of the nearly complete loss of selfed individuals over time. This results in an effectively random mating outcrossing population.  相似文献   

5.
The evolutionary dynamics of recessive or slightly dominant lethal mutations in partially self-fertilizing plants are analyzed using two models. In the identity-equilibrium model, lethals occur at a finite number of unlinked loci among which genotype frequencies are independent in mature plants. In the Kondrashov model, lethals occur at an infinite number of unlinked loci with identity disequilibrium produced by partial selfing. If the genomic mutation rate to (nearly) recessive lethal alleles is sufficiently high, such that the mean number of lethals (or lethal equivalents) per mature plant maintained at equilibrium under complete outcrossing exceeds 10, selective interference among loci creates a sharp discontinuity in the mean number of lethals maintained as a function of the selfing rate. Virtually no purging of the lethals occurs unless the selfing rate closely approaches or exceeds a threshold selfing rate, at which there is a precipitous drop in the mean number of lethals maintained. Identity disequilibrium lowers the threshold selfing rate by increasing the ratio of variance to mean number of lethals per plant, increasing the opportunity for selection. This theory helps to explain observations on plant species that display very high inbreeding depression despite intermediate selfing rates.  相似文献   

6.
7.
When populations are partially inbred due to the population structure or to a mixed mating system like partial self-fertilization, some individuals will be more inbred than others. This heterogeneity among individuals in the history of inbreeding can greatly complicate the interpretation of measures of quantitative genetic variability when the traits studied exhibit inbreeding depression. Partial inbreeding can also bias measures of phenotypic selection toward the detection of strong directional and stabilizing selection. In this paper, data are presented from several inbreeding experiments conducted on two partially selfing, annual populations of the monkeyflower Mimulus guttatus that show that the means of many of the morphological and phenological traits measured were affected by inbreeding. These findings imply that estimates of heritabilities and additive genetic covariances would not reflect the potential for these populations to respond to selection. Phenotypic selection analyses conducted on naturally occurring plants, involving linear regressions of relative seed production on the traits, revealed significant directional selection on many of the same quantitative traits measured in the inbreeding studies. However, when the same selection analyses were performed on plants with known histories of inbreeding, part of the statistical relationship between relative seed number and the traits was found to be due to the mating system: inbred individuals had both lower seed production and different mean values for the traits than outcrossed individuals. It is also shown, with a hypothetical example, that partial inbreeding can bias measures of stabilizing selection toward the detection of strong stabilizing selection. Partial inbreeding therefore tends to make directional and stabilizing selection appear stronger than it is, and it may be that natural selection in the wild is actually weaker than many studies of partially inbred species suggest.  相似文献   

8.
Inbreeding with close relatives and outbreeding with members of distant populations can both result in deleterious shifts in the means of fitness-related characters, most likely for very different reasons. Such processes often occur simultaneously and have important implications for the evolution of mating systems, dispersal strategies, and speciation. They are also relevant to the design of breeding strategies for captive populations of endangered species. A general expression is presented for the expected phenotype of an individual under the joint influence of inbreeding and crossbreeding. This expression is a simple function of the inbreeding coefficient, of source and hybridity indices of crossbreeding, and of specific forms of gene action. Application of the model may be of use in identifying the mechanistic bases for a number of evolutionary phenomena such as the shift from outbreeding enhancement to outbreeding depression that occurs with population divergence.  相似文献   

9.
The effects of one and two generations of inbreeding were studied in plants from four natural populations of the annual plant, Collinsia heterophylla, using inbred and outcrossed plants generated by hand pollinations to create expected inbreeding coefficients ranging from 0–0.75. The selfing rates of the populations were estimated using allozyme markers to range from 0.37–0.69. Inbreeding depression was mild, ranging from 5–40%, but significant effects were detected for characters measured at all stages of the life cycle. Fitness components declined significantly with the inbreeding coefficient, and regression of fitness characters on inbreeding coefficients gave no evidence of any strongly synergistic effects attributable to the different genetic factors that contribute to decline in fitness under inbreeding. The magnitude of inbreeding depression did not clearly decrease with the populations' levels of inbreeding. This is not surprising because the selfing rates are similar enough that it is unlikely that the populations have been characterized for long periods of time by these different inbreeding levels.  相似文献   

10.
Gametophytic self‐incompatibility (GSI) is a widespread genetic system, which enables hermaphroditic plants to avoid self‐fertilization and mating with close relatives. Inbreeding depression is thought to be the major force maintaining SI; however, inbreeding depression is a dynamical variable that depends in particular on the mating system. In this article we use multilocus, individual‐based simulations to examine the coevolution of SI and inbreeding depression within finite populations. We focus on the conditions for the maintenance of SI when self‐compatible (SC) mutants are introduced in the population by recurrent mutation, and compare simulation results with predictions from an analytical model treating inbreeding depression as a fixed parameter (thereby neglecting effects of purging within the SC subpopulation). In agreement with previous models, we observe that the maintenance of SI is associated with high inbreeding depression and is facilitated by high rates of self‐pollination. Purging of deleterious mutations by SC mutants has little effect on the spread of those mutants as long as most deleterious alleles have weak fitness effects: in this case, the genetic architecture of inbreeding depression has little effect on the maintenance of SI. By contrast, purging may greatly enhance the spread of SC mutants when deleterious alleles have strong fitness effects.  相似文献   

11.
The magnitude of inbreeding depression caused by recessive mutations in a population is dependent on the mutation rate and on the intensity of selection against the mutations. We studied geographical differences in the level of early inbreeding depression of Scots pine in a common garden experiment. The mean abortion rate of experimentally self-pollinated seeds was significantly lower (75.4%) among trees that originated from northern populations (66–69°N) than among trees from more southern (60–62°N) populations (86.5%). Thus, the number of embryonic lethal equivalents was lower in the northern populations (4.5) than in the southern ones (6.9). The outcrossing rate at the mature seed stage was slightly lower in the northern populations (average 0.93) than in the southern one (0.99). The estimated selfing rate at the zygote stage varied from 0–0.28 in the populations. The reduction in the magnitude of inbreeding depression in the north may have been caused by increased levels of self-fertilization in the northern populations. The proportion of self-fertilized seedlings and adults was very small in all populations (F ≈ 0), indicating high inbreeding depression also in later life stages. The high level of inbreeding depression in the partially selfing Scots pine can be explained by mutation-selection balance only if the mutation rate is high.  相似文献   

12.
Estimates of inbreeding depression obtained from the literature were used to evaluate the association between inbreeding depression and the degree of self-fertilization in natural plant populations. Theoretical models predict that the magnitude of inbreeding depression will decrease with inbreeding as deleterious recessive alleles are expressed and purged through selection. If selection acts differentially among life history stages and deleterious effects are uncorrelated among stages, then the timing of inbreeding depression may also evolve with inbreeding. Estimates of cumulative inbreeding depression and stage-specific inbreeding depression (four stages: seed production of parent, germination, juvenile survival, and growth/reproduction) were compiled for 79 populations (using means of replicates, N = 62) comprising 54 species from 23 families of vascular plants. Where available, data on the mating system also were collected and used as a measure of inbreeding history. A significant negative correlation was found between cumulative inbreeding depression and the primary selfing rate for the combined sample of angiosperms (N = 35) and gymnosperms (N = 9); the correlation was significant for angiosperms but not gymnosperms examined separately. The average inbreeding depression in predominantly selfing species (δ = 0.23) was significantly less (43%) than that in predominantly outcrossing species (δ = 0.53). These results support the theoretical prediction that selfing reduces the magnitude of inbreeding depression. Most self-fertilizing species expressed the majority of their inbreeding depression late in the life cycle, at the stage of growth/reproduction (14 of 18 species), whereas outcrossing species expressed much of their inbreeding depression either early, at seed production (17 of 40 species), or late (19 species). For species with four life stages examined, selfing and outcrossing species differed in the magnitude of inbreeding depression at the stage of seed production (selfing δ = 0.05, N = 11; outcrossing δ = 0.32, N = 31), germination (selfing δ = 0.02, outcrossing δ = 0.12), and survival to reproduction (selfing δ = 0.04, outcrossing δ = 0.15), but not at growth and reproduction (selfing δ = 0.21, outcrossing δ = 0.27); inbreeding depression in selfers relative to outcrossers increased from early to late life stages. These results support the hypothesis that most early acting inbreeding depression is due to recessive lethals and can be purged through inbreeding, whereas much of the late-acting inbreeding depression is due to weakly deleterious mutations and is very difficult to purge, even under extreme inbreeding.  相似文献   

13.
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

14.
Recent theoretical work has shown that there can be selection favoring the maintenance of sexual reproduction and the evolution of increased recombination when deleterious mutations at different loci interact synergistically, such that the logarithm of fitness declines at a greater than linear rate with the number of harmful mutations per genome. The purpose of this experimental study was to determine whether synergism exists for genes affecting fitness components in two partially selfing populations of the monkey flower Mimulus guttatus. For each wild population, a large randomly mated base population was constructed and many independent lines, inbred to differing degrees, were extracted from this base population. Lines with expected inbreeding coefficients of 0, 0.25, 0.5, and 0.75 were raised simultaneously in the greenhouse and were scored for germination, flowering, flower production, and pollen viability. All fitness traits except germination success declined with increased inbreeding, but in spite of the substantial inbreeding depression found in this study, relatively little evidence of synergistic epistasis was found. The only trait that showed evidence of synergism was pollen viability. These results indicate that synergism is not strong for the fitness components measured in this study. The evidence for synergism from other published studies is also reviewed.  相似文献   

15.
The focus of this study was to examine the consequences of five sequential generations of enforced selfing and outcrossing in two annual populations of the mixed-mating Mimulus guttatus. Our primary goal was to determine whether purging of deleterious recessive alleles occurs uniformly between populations and among families, and thus gain insights into the mode of gene action (dominance, overdominance, and/or epistasis) governing the expression of inbreeding depression at both the population and family levels across the life cycle.  相似文献   

16.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

17.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

18.
Inbreeding depression is a major selective force favoring outcrossing in flowering plants. Some self-fertilization, however, should weaken the harmful effects of inbreeding by exposing genetic load to selection. This study examines the maintenance of inbreeding depression in partially self-fertilizing populations of the long-lived, herbaceous wetland plant, Decodon verticillatus (L.) Ell. (Lythraceae). Estimates from ten populations indicate that 30% of offspring are produced through self-fertilization. Population-genetic estimates of inbreeding depression (δ = 1 – relative mean fitness of selfed progeny) based on changes in the inbreeding coefficient for the same ten populations were uniformly high, ranging from 0.49 to 1.79 and averaging 1.11 ± 0.29 SE. Although confidence intervals of individual population estimates were large, estimates were significantly greater than 0 in six populations and greater than 0.5 in four. Inbreeding depression was also estimated by comparing growth, survival, and flowering of experimentally selfed and outcrossed offspring from two of these populations in a 1-yr glasshouse experiment involving three density regimes; after which offspring were transplanted into garden arrays and two field sites and monitored for two consecutive growing seasons. Overall for survival averaged 0.27 ± 0.01 in the glasshouse, 0.33 ± 0.04 in the garden, and 0.46 ± 0.04 in the field. The glasshouse experiment also revealed strong inbreeding depression for growth variables, especially above-soil dry weight ( = 0.42 ± 0.03). The fitness consequences of inbreeding depression for these growth variables approximately doubles if survival to maturity is determined by severe truncation selection. Despite substantial selfing, inbreeding depression appears to be a major selective force favoring the maintenance of outcrossing in D. verticillatus.  相似文献   

19.
Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common test site. Response to inbreeding differed greatly among species over time and in all regards. Only Douglas-fir and noble fir will be contrasted here, because ponderosa pine usually was intermediate to the other two in its response to inbreeding. In earlier reports, compared to noble fir Douglas-fir had a higher rate of primary selfing and larger inbreeding depression in seed set. Douglas-fir continued to have higher inbreeding depression in nursery and early field survival. The species differed in time courses of inbreeding depression in height and in allocation of growth due to crowding. Between ages 6 and 12, the relative elongation rate (dm · dm?1 · yr?1) of Douglas-fir was significantly greater in the selfs than in the outcrosses. The response was not observed in noble fir. At final measurement, inbreeding depression in diameter relative to inbreeding depression in height was greater in Douglas-fir than in noble fir. At final measurement inbreeding depression in height was inversely related to inbreeding depression in survival. Cumulative inbreeding depressions from time of fertilization to final measurement were 0.98, 0.94, and 0.83 for Douglas-fir, ponderosa pine, and noble fir, respectively, which indicates that selfs will not contribute to the mature, reproductive populations.  相似文献   

20.
The partial dominance model for the evolution of inbreeding depression predicts that tetraploids should exhibit less inbreeding depression than their diploid progenitors. We tested this prediction by comparing the magnitude of inbreeding depression in tetraploid and diploid populations of the herbaceous perennial Epilobium angustifolium (Onagraceae). Inbreeding depression was estimated in the greenhouse for three tetraploid and two diploid populations at four life stages. The mating system of a tetraploid population was estimated and compared to a previous estimate for diploids. Tetraploids showed less inbreeding depression than diploids at all life history stages, and these differences were significant for seed-set and cumulative fitness, but not for germination, survival, or plant dry mass at nine weeks. This result suggests that the genetic basis of inbreeding depression may differ among life stages. The primary selfing rate of the tetraploid population was r = 0.43, which is nearly identical to that of a diploid population (r = 0.45), indicating that differences in inbreeding depression between diploids and tetraploids are probably not due to differences in the mating system. Cumulative inbreeding depression, calculated from the four life history stages, was significantly higher for diploids () than for tetraploids (), supporting the partial dominance model of inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号