首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

2.
F2-isoprostanes are prostaglandin F2-like compounds that are formed nonenzymatically by free radical mediated peroxidation of arachidonic acid. Intermediate in the pathway of the formation of isoprostanes are labile prostaglandin H2-like bicyclic endoperoxides (H2-isoprostanes), which are reduced to F2-isoprostanes and also undergo rearrangement in vivo to form E-ring and D-ring isoprostanes, isothromboxanes, and highly reactive acyclic gamma-ketoaldehdyes (isoketals). Docosahexaenoic acid (C22:6omega3) is highly enriched in neurons in the brain and is highly susceptible to oxidation. Free radical mediated oxidation of docosahexaenoic acid results in the formation of isoprostane-like compounds (neuroprostanes). F4- and E4/D4-neuroprostanes as well as neuroketals have been shown to be produced in vivo. Finally, we recently discovered a new pathway of lipid peroxidation that forms compounds with a substituted tetrahydrofuran ring (isofurans). Oxygen concentrations differentially modulate the formation of isoprostanes and isofurans; at elevated oxygen concentrations, the formation of isofurans is favored whereas the formation of isoprostanes is disfavored.  相似文献   

3.
4.
Tau protein is the major component of the intraneuronal filamentous inclusions that constitute defining neuropathological characteristics of Alzheimer's disease and other tauopathies. The discovery of tau gene mutations in familial forms of frontotemporal dementia has established that dysfunction of the tau protein is sufficient to cause neurodegeneration and dementia. Here we have tested 42 compounds belonging to nine different chemical classes for their ability to inhibit heparin-induced assembly of tau into filaments in vitro. Several phenothiazines (methylene blue, azure A, azure B, and quinacrine mustard), polyphenols (myricetin, epicatechin 5-gallate, gossypetin, and 2,3,4,2',4'-pentahydroxybenzophenone), and the porphyrin ferric dehydroporphyrin IX inhibited tau filament formation with IC(50) values in the low micromolar range as assessed by thioflavin S fluorescence, electron microscopy, and Sarkosyl insolubility. Disassembly of tau filaments was observed in the presence of the porphyrin phthalocyanine. Compounds that inhibited tau filament assembly were also found to inhibit the formation of Abeta fibrils. Biochemical analysis revealed the formation of soluble oligomeric tau in the presence of the inhibitory compounds, suggesting that this may be the mechanism by which tau filament formation is inhibited. The compounds investigated did not affect the ability of tau to interact with microtubules. Identification of small molecule inhibitors of heparin-induced assembly of tau will form a starting point for the development of mechanism-based therapies for the tauopathies.  相似文献   

5.
Acetic acid hydrazide containing 5-methyl-2-benzoxazolinone (4) was synthesized by the condensation of 2-(5-methyl-2-benzoxazolinone-3-yl)acetate with hydrazine hydrate. Thiosemicarbazide derivatives (5a-5d) were afforded by the reaction of corresponding compound 4 with substituted isothiocyanates. The cyclization of compounds 5a-5d in the presence of triethylamine resulted in the formation of compounds 6a-6d containing 1,2,4-triazole ring. On the other hand, the treatment of compounds 5a-5d with orthophosphoric acid caused the conversion of side chain of compounds 5a-5d into 1,3,4-thiadiazole ring: thus, compounds 7a-7c were obtained. The treatment of compound 4 with aromatic aldehydes resulted in the formation of arylidene hydrazides as cis-trans conformers (8a-8e). The structures of the compounds were elucidated by spectral and elemental analysis. While most compounds were exhibiting high activity in the analgesic-anti-inflammatory field, most of them were found to be inactive against bacteria and fungi.  相似文献   

6.
When glycerol was used to induce myxospore formation in Myxococcu xanthus in the presence of 32Pi, the label was incorporated into a variety of acid-soluble compounds. Incorporation into ribonucleotides was approximately fivefold greater than in vegetative cells or noninducible mutants grown in glycerol. The label was also incorporated into some unknown compounds and material tentatively identified as guanosine tetraphosphate. Marked accumulation into polyphosphates, which were present mainly in culture supernatants, occurred relatively late during myxospore formation. The kinetics of accumulation of some of these compounds and their distribution into acid-soluble cell extracts and culture supernatants are described and compared with those in vegetative cells and noninducible mutants.  相似文献   

7.
Hydroxylamines, produced as intermediates in the reductive metabolism of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene between nitroaromatic parent compounds and corresponding amines, were unstable in aqueous solution in the presence of O2. Reactions of hydroxylamines to compounds other than amines may be the major cause of poor mass balance observations in bioremediation systems where only aminated products are monitored. Results demonstrate the formation of azoxy compounds as products of abiotic aryl-hydroxylamine reactions.  相似文献   

8.
Substituted s-tetrazine compounds were designed and investigated in order to find comprehensive relationships between the structures and performances of high-nitrogen energetic compounds. Density functional theory (DFT) was used to predict the optimized geometries, electronic structures, heats of formation and densities, and the detonation properties were evaluated by using the VLW equation of state (EOS). Calculation results show that there are good linear relationships between heats of formation, densities, detonation properties and the number of N atom in all designed high-nitrogen compounds. Furthermore, several designed high-nitrogen compounds show good detonation velocities and pressures compared with octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), making them potential candidates for high-energy-density materials (HEDM).  相似文献   

9.
Changes in levels of IAA, phenolic compounds, peroxidase, polyphenol oxidase, and IAA oxidase activities in the corm and the apical bud of Crocus sativusL. during bud growth and development, with special emphasis on the flowering stage, were studied. In the bud, flower formation was accompanied by enhanced activities of peroxidase, polyphenol oxidase, IAA oxidase, and higher contents of phenolic compounds as well as lower levels of IAA. In the corm, during the flower formation, these enzymes showed an opposite behavior. Moreover, the contents of phenolics and IAA in the corm tissues during flower formation and growth were higher than at the other developmental stages. It may be concluded that the transition of saffron plants to flowering is correlated with peroxidase, polyphenol oxidase, and IAA oxidase. Furthermore, these enzymes might exert their roles in the regulation of flowering through their participation in IAA catabolism. The hypothesis of regulation of bud development by an interaction between phenolics and the enzymes involved in IAA catabolism is discussed.  相似文献   

10.
Rotenoids and related compounds were investigated for their effects on animal and plant viruses. Of 35 compounds examined, rotenone, rotenone norketone, acetylrotenone, acetylrotenone norketone, deguelin, deguelic acid, dehydrodeguelin, and isotubanol norketone, all used at low concentrations, suppressed the growth of Newcastle disease and herpes simplex viruses as determined by the agar diffusion, plaque inhibition method. Most of the compounds likewise decreased the number of necrotic spots on tobacco mosaic virus-infected leaf discs. Only derrisic acid completely inhibited the local lesion formation at subphytotoxic concentrations. Correlation of antiviral activity with respiratory inhibition of these compounds is discussed.  相似文献   

11.
The oxygenation of arachidonic acid by lipoxygenases results in the formation of HPETEs (hydroperoxyeicosatetraenoic acids), the first products of the LOX pathway. These compounds are short lived and are catabolised into various families of more stable compounds of which the HETEs, hepoxilins, lipoxins and leukotrienes have been identified so far. The development of new techniques have helped to identify and understand the structures of various HPETEs and only recently the biological effects of HPETEs and their various catabolites are being unraveled. Although lipoxygenases are ubiquitous, not all tissues possess the same spectrum of lipoxygenase enzymes. Hence different HPETEs can be formed in different tissues. Recent studies have revealed that HPETEs or products derived from them possess a diversity of important biological properties including the regulation of electrolyte flux and eicosanoid and corticosterone syntheses, release of histamine, regulation of oocyte maturation and release of various reproductive hormones. HPETEs appear to be involved in some pathological conditions viz, skin psoriasis, Clarkson's disease, nerve injury and spinal cord ischemia. These novel eicosanoids are associated with the release of insulin as well as renin. Recently HPETEs have been suggested to act as second messengers in the Aplysia sensory neurons and its catabolite, hepoxilin, has been demonstrated to have effects on mammalian hippocampal neurons. The purpose of this review is to provide a brief summary of the formation of the HPETEs and the various families of compounds derived from them as well as the various types of biological activities for these products described so far.  相似文献   

12.
During the re-isolation of the lead compound nodulisporic acid A (1a) and targeted chemical screening for related compounds, we discovered a series of 1'-deoxy congeners named herein nodulisporic acids B (1b), B1 (2b), and B2 (3b). In comparison with nodulisporic acid A, these compounds were less active and were chemically unstable resulting into formation of delta23 dehydro derivatives. Therefore, these compounds were stabilized and isolated as sodium salts and methyl ester. Nodulisporic acid B is 100-fold less active than nodulisporic acid A against fleas. The isolation, structure elucidation, and biological activities of these compounds are described.  相似文献   

13.
Levy M  Porat Y  Bacharach E  Shalev DE  Gazit E 《Biochemistry》2008,47(22):5896-5904
The study of the mechanism of amyloid fibril formation and its inhibition is of key medical importance due to the lack of amyloid assembly inhibitors that are approved for clinical use. We have previously demonstrated the potent inhibitory potential of phenolsulfonphthalein, a nontoxic compound that was approved for diagnostic use in human subjects, on aggregation of islet amyloid polypeptide (IAPP) that is associated with type 2 diabetes. Here, we extend our studies on the mechanism of action of phenolsulfonphthalein by comparing its antiamyloidogenic effect to a very similar compound that is also approved for human use, phenolphthalein. While these compounds have very similar primary chemical structures, they significantly differ in their three-dimensional conformation. Our results clearly demonstrated that these two compounds had completely different inhibitory potencies: While phenolsulfonphthalein was a very potent inhibitor of amyloid fibril formation by IAPP, phenolphthalein did not show significant antiamyloidogenic activity. This behavior was observed with a short amyloid fragment of IAPP and also with the full-length polypeptide. The NMR spectrum of IAPP 20-29 in the presence of phenolsulfonphthalein showed chemical shift deviations that were different from the unbound or phenolphthalein-bound peptide. Differential activity was also observed in the inhibition of insulin amyloid formation by these two compounds, and density-gradient experiments clearly demonstrated the different inhibitory effect of the two compounds on the formation of prefibrillar assemblies. Taken together, our studies suggest that the three-dimensional arrangement of the polyphenol phenolsulfonphthalein has a central role in its amyloid formation inhibition activity.  相似文献   

14.
The oxidative metabolism of procarbazine, its azo, hydrazone, and two azoxy derivatives, and methylhydrazine by hepatic microsomes from phenobarbital-pretreated rats was investigated to elucidate the pathway of metabolism that resulted in methane formation from procarbazine. When incubated with microsomal reaction mixtures fortified with NADPH, all of the compounds, except the azoxy isomers, were metabolized to yield methane. A lag phase in methane formation was noted for procarbazine, but not for the other compounds. Kinetic and inhibition studies utilizing methimazole and ethylhydrazine precluded methylhydrazine as an intermediate in methane formation from procarbazine. When the azo derivative was oxidatively metabolized in the presence of liver microsomes, no hydrazone tautomer was detected. Upon monitoring the production of the azo and hydrazone metabolites formed during microsomal metabolism of procarbazine, the azo derivative was formed in sufficient quantities to account for the majority of the methane produced. In addition, small amounts of hydrazone were also detected. It was concluded that both the azo and hydrazone metabolites of procarbazine contribute to methane formation from the terminal methyl group of the hydrazine with the azo derivative being the predominant source and the hydrazone derivative being a minor source of methane. Consideration of the chemical and enzymatic pathways of procarbazine oxidation and the implication of a methyl radical intermediate in methane formation are discussed.  相似文献   

15.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

16.
Ethyl carbamate (EC) is a genotoxic compound in vitro and in vivo, it binds covalently to DNA and is an animal carcinogen. Today, EC is mainly found as a natural trace constituent in different alcoholic beverages and in fermented food items. Data on analytical methodology and the levels of EC in different food items are summarized and the daily burden of humans is estimated. Under normal dietary habits excluding alcoholic beverages, the unavoidable daily intake is 10-20 ng/kg b.w. On the basis of the evaluation of all toxicity data and its mode of action a conventional risk assessment of EC indicates that this level represents a negligible lifetime cancer risk (less than 0.0001%). Individual habits may greatly enhance the risk. Regular drinking of table wine (500 ml/day) would increase the risk up to 5 times, regular drinking of stone-fruit distillates (20-40 ml/day) would raise the calculated hypothetical tumor risk to near 0.01%. Human exposure to carcinogenic compounds should be as low as reasonably achievable. In order to take reliable measures to reduce EC levels in beverages and foods, it is crucial to know the mode of its formation. For its natural formation the presence of ethanol is absolutely required. In stone-fruit distillates hydrogen cyanide together with photochemically active substances are crucial to form EC. The main part of EC is formed after the distillation involving photochemical reactions. In wine (and probably bread) significant EC formation seems to depend on heat treatment. While in distillates hydrogen cyanide is the most important single precursor, in wine different carbamyl compounds, mainly urea, seem to be involved in EC formation. Despite this apparent difference a common EC formation pathway is discussed for all alcoholic beverages by assuming cyanic-/isocyanic acid as an important ultimate reactant with ethanol. Some ideas are presented as to the possible course of future work.  相似文献   

17.
AIMS: To determine the effect of a composition comprising ovotransferrin (OT), protamine sulfate (PS) and ethylenediaminetetraacetic acid (EDTA) on biofilm formation by catheter-associated bacteria. METHODS AND RESULTS: The in vitro activity of OT, PS and EDTA alone and in combinations against biofilm formation by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis and Staphylococcus epidermidis was investigated. All the three compounds either alone or in combinations failed to inhibit the growth completely at the concentrations tested. However, the subinhibitory concentrations of three compounds in a composition showed synergistic inhibitory effect on biofilm formation by K. pneumoniae, Ps. aeruginosa and S. epidermidis. Furthermore, 79-95% reduction in Ps. aeruginosa and S. epidermidis biofilm formation was observed in a clear vinyl urinary catheter treated with the composition. CONCLUSION: The subinhibitory concentrations of OT, PS and EDTA in a composition were effective in reducing biofilm formation by catheter-associated bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that a synergistic composition-comprising non-antibiotic generally regarded as safe (GRAS) compounds such as OT, PS and EDTA may be used in the prevention of catheter-related infections.  相似文献   

18.
Pyridoxamine (PM) has long been known to inhibit protein glycation via various mechanisms of action. One such mechanism involves the scavenging of carbonyl compounds with glycating ability. Despite the abundant literature on this topic, few quantitative kinetic studies on the processes involved have been reported. In this work, we conducted a comparative kinetic study under physiological pH and temperature conditions of the reactions of PM, Ac-Phe-Lys and Ac-Cys with various glycating carbonyl compounds (viz. aldehydes, α-oxoaldehydes and ketones). The microscopic formation rate constants for Schiff bases of PM and various carbonyl compounds, k 1, are of the same order of magnitude as those for the Schiff bases of Ac-Phe-Lys. However, because PM exhibits a higher proportion of reactive form at physiological pH, its observed second-order rate constant is ca. five times greater than that for Ac-Phe-Lys. That could explain PM ability to compete with amino residues in protein glycation. On the other hand, the observed formation rate constant for thiohemiacetals is four orders of magnitude greater than the formation constants for the Schiff bases of PM, which excludes PM as a competitive inhibitor of Cys residues in protein glycation.  相似文献   

19.
Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents.  相似文献   

20.
J D Page  I Husain  A Sancar  S G Chaney 《Biochemistry》1990,29(4):1016-1024
Platinum compounds with the diaminocyclohexane (dach) carrier ligand are of particular interest because cell lines that have developed resistance to platinum compounds in general often retain sensitivity to dach-platinum compounds, suggesting that the dach carrier ligand affects the formation, repair, or lethality of platinum-DNA adducts. The effect of the dach ligand on platinum adduct formation was assessed by using the (HaeIII-HindIII)146 fragment of pBR322 treated to give equal amounts of dach- or ethylene-diamine-platinum adducts. The sites of adduct formation were mapped by digestion with Escherichia coli ABC excinuclease. There were no significant effects of the dach carrier ligand on the types or sites of platinum adduct formation. The effect of the dach ligand on platinum adduct repair was determined by using synthetic oligomers designed to have single, specific platinum adducts (G monoadduct; GG, AG, or GNG diadduct) with either the dach or ethylenediamine (en) carrier ligand. These adducts differed significantly in their ability to serve as substrates for ABC excinuclease with GNG greater than or equal to G greater than AG greater than GG. The dach carrier ligand had little effect on the recognition of AG and GG adducts by ABC excinuclease, but significantly improved the ability of ABC excinuclease to excise G monoadducts and GNG diadducts. These data suggest that if the carrier ligand has any effect on the repair of platinum adducts, it is more likely to exert that effect on the repair of platinum monoadducts or GNG diadducts rather than on the more abundant AG or GG diadducts. [14C]Thiourea incorporation was used to quantitate the rate of monoadduct to diadduct conversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号