首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls. J. Morphol. 233:237–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.  相似文献   

3.
The pectoralis muscle (M. pectoralis) of many premier soaring birds contains a smaller, accessory, deep belly in addition to the much larger superficial belly found in all flying birds. Here we describe the muscle fiber types in both the superficial and deep bellies of the pectoralis of one such adept soaring species, the white pelican (Pelecanus erythrorhynchos).Histochemical techniques are used to demonstrate both nicotinamide adenine dinucleotide (reduced) and myofibrillar adenosine triphosphatase activities within the muscle fibers. Immunocytochemical methods employing several monoclonal antibodies, each directed against a different myosin heavy chain epitope of the chicken, are also used to characterize the fibers. While the superficial belly of the muscle consists entirely of fast-twitch oxidative-glycolytic fibers, the deep belly is composed exclusively of slow fibers. These slow fibers are labelled by two different antibodies specific for chicken slow myosin. We suggest that the fibers of the superficial belly are best suited to flapping flight, and that the fibers of the deep belly would be recruited only during soaring flight. Furthermore, we hypothesize that the deep belly found in the pectoralis of soaring species probably evolved from a deep neuromuscular compartment of the superficial belly.  相似文献   

4.
Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring‐gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk‐averse gliding airspeed), we found that inter‐ and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk‐sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.  相似文献   

5.
Avian wing elements have been shown to experience both dorsoventral bending and torsional loads during flapping flight. However, not all birds use continuous flapping as a primary flight strategy. The pelecaniforms exhibit extraordinary diversity in flight mode, utilizing flapping, flap‐gliding, and soaring. Here we (1) characterize the cross‐sectional geometry of the three main wing bone (humerus, ulna, carpometacarpus), (2) use elements of beam theory to estimate resistance to loading, and (3) examine patterns of variation in hypothesized loading resistance relative to flight and diving mode in 16 species of pelecaniform birds. Patterns emerge that are common to all species, as well as some characteristics that are flight‐ and diving‐mode specific. In all birds examined, the distal most wing segment (carpometacarpus) is the most elliptical (relatively high Imax/Imin) at mid‐shaft, suggesting a shape optimized to resist bending loads in a dorsoventral direction. As primary flight feathers attach at an oblique angle relative to the long axis of the carpometacarpus, they are likely responsible for inducing bending of this element during flight. Moreover, among flight modes examined the flapping group (cormorants) exhibits more elliptical humeri and carpometacarpi than other flight modes, perhaps pertaining to the higher frequency of bending loads in these elements. The soaring birds (pelicans and gannets) exhibit wing elements with near‐circular cross‐sections and higher polar moments of area than in the flap and flap‐gliding birds, suggesting shapes optimized to offer increased resistance to torsional loads. This analysis of cross‐sectional geometry has enhanced our interpretation of how the wing elements are being loaded and ultimately how they are being used during normal activities. J. Morphol., 2011. © 2011 Wiley‐Liss,Inc.  相似文献   

6.
Slow fibres are typically characterized as functioning in avian postural behaviours such as soaring flight and are described for a number of elite soarers such as vultures, pelicans and albatrosses. Golden Eagles and Bald Eagles also display soaring behaviour, and we examined their flight muscles for the presence of slow fibres. Surprisingly, eagles lack a deep layer to the pectoralis found in other soaring species. Additionally, the pectoralis as well as other shoulder muscles had few to no slow muscle fibres. The lack of functionally meaningful numbers of slow muscle fibres in eagle flight muscles indicates that they must rely on fast fibres for posture; these can function in that role due to their high aerobic capacity and also perhaps a ‘tuning’ of muscle contraction frequency to function more efficiently at isometric contractions.  相似文献   

7.
Six locomotory muscles of wild common coots, Fulica atra, were analyzed histochemically. Capillarity and fiber-type distributions were correlated to the functional implications and physiological needs of each muscle. Leg muscles exhibit three unevenly distributed fiber types, a pattern that reflects the great variety of terrestrial and aquatic locomotory performances that coots are able to develop. Aerobic zones are presumably recruited during steady swimming and diving, while regions with anaerobic characteristics may be used for bursts of activity such as sprint swimming or during take off, when coots run along the water's surface. Fiber types and capillarization in wing muscles have a marked oxidative trend. High wing beat frequencies, short and broad wings, and the long distance migrations that these birds perform indicate that the presence of high numbers of oxidative fibers and the well developed capillary supply are needed for enhanced oxygen uptake. The pectoralis muscle, except in its deep part, has exclusively fast oxidative fibers with a very high staining intensity for succinate dehydrogenase assay as compared to the same fiber type of other muscles. Its predominant role in flapping flight justifies these characteristics that are typical of fibers with high aerobic metabolism. The deep part of the pectoralis muscle presents a low proportion of an unusual slow anaerobic fiber type. These fibers could play a role during feeding dives when the bird presses the air out of the feathers by tightening the wings against the body. A linear relationship between capillary and fiber densities in all coot muscles studied reflects an adjustment between fiber diameter and vascularization in order to obtain the oxygen for mitochondrial supply. This strategy seems a suitable way to cope with the rigid aerobic constraints that flying and diving impose upon the coot's physiology. J. Morphol. 237:147–164, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Morphology, Velocity, and Intermittent Flight in Birds   总被引:3,自引:1,他引:2  
Body size, pectoralis composition, aspect ratio of the wing,and forward speed affect the use of intermittent flight in birds.During intermittent non-flapping phases, birds extend theirwings and glide or flex their wings and bound. The pectoralismuscle is active during glides but not during bounds; activityin other primary flight muscles is variable. Mechanical power,altitude, and velocity vary among wingbeats in flapping phases;associated with this variation are changes in neuromuscularrecruitment, wingbeat frequency, amplitude, and gait. Speciesof intermediate body mass (35–158 g) tend to flap-glideat slower speeds and flap-bound at faster speeds, regardlessof the aspect ratio of their wings. Such behavior may reducemechanical power output relative to continuous flapping. Smallerspecies (<20 g) with wings of low aspect ratio may flap-boundat all speeds, yet existing models do not predict an aerodynamicadvantage for the flight style at slow speeds. The behaviorof these species appears to be due to wing shape rather thanpectoralis physiology. As body size increases among species,percent time spent flapping increases, and birds much largerthan 300 g do not flap-bound. This pattern may be explainedby adverse scaling of mass-specific power or lift per unit poweroutput available from flight muscles. The size limit for theability to bound intermittently may be offset somewhat by thescaling of pectoralis composition. The percentage of time spentflapping during intermittent flight also varies according toflight speed.  相似文献   

9.
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we describe the fiber composition of muscles from the wings, shoulders, and legs of two small avian species, which also display very high wingbeat frequencies: Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata). All flight muscles examined in both species contained exclusively fast oxidative glycolytic (FOG) fibers. These unique results suggest that fast oxidative fibers are both necessary and sufficient for the full range of flight behaviors in these small-bodied birds. Like all other studied birds, the zebra finch gastrocnemius, a tarsometatarsal extensor, contained a mixture of FOG (27.1%), slow oxidative (SO, 12.7%), and fast glycolytic (FG, 60.2%) fibers. By contrast, the hummingbird gastrocnemius lacked FG fibers (85.5% FOG, 14.5% SO), which may reflect the reduced role of the hindlimb during take-off. We further hypothesize that thermogenic requirements constrain fiber type heterogeneity in these small endothermic vertebrates.  相似文献   

10.
Both wing size and wing shape affect the flight abilities of birds. Intra and inter‐specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture Cathartes aura, an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non‐migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite‐tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike what has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower‐cost flight, through low wing‐loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.  相似文献   

11.
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.  相似文献   

12.
Summary Postnatal changes in wing morphology, flight ability, muscle morphology, and histochemistry were investigated in the little brown bat, Myotis lucifugus. The pectoralis major, acromiodeltoideus, and quadriceps femoris muscles were examined using stains for myofibrillar ATPase, succinate dehydrogenase (SDH), and mitochondrial -glycerophosphate dehydrogenase (-GPDH) enzyme reactions. Bats first exhibited spontaneous, drop-evoked flapping behavior at 10 days, short horizontal flight at 17 days, and sustained flight at 24 days of age. Wing loading decreased and aspect ratio increased during postnatal development, each reaching adult range before the onset of sustained flight. Histochemically, fibers from the three muscles were undifferentiated at birth and had lower oxidative and glycolytic capacities compared to other age groups. Cross-sectional areas of fibers from the pectoralis and acromiodeltoideus muscles increased significantly at an age when dropevoked flapping behavior was first observed, suggesting that the neuromuscular mechanism controlling flapping did not develop until this time. Throughout the postnatal growth period, pectoralis and acromiodeltoideus muscle mass and fiber cross-sectional area increased significantly. By day 17 the pectoralis muscle had become differentiated in glycolytic capacity, as indicated by the mosaic staining pattern for -GPDH. By contrast, the quadriceps fibers were relatively large at birth and slowly increased in size during the postnatal period. Fiber differentiation was evident at the time young bats began to fly, as indicated by a mosaic pattern of staining for myosin ATPase. These results indicate that flight muscles (pectoralis and acromiodeltoideus) are less well developed at birth and undergo rapid development just before the onset of flight. By contrast the quadriceps femoris muscle, which is required for postural control, is more developed at birth than the flight muscles and grows more slowly during subsequent development.  相似文献   

13.
Billions of birds migrate to exploit seasonally available resources. The ranges of migration vary greatly among species, but the underlying mechanisms are poorly understood. I hypothesise that flight mode (flapping or soaring) and body mass affect migration range through their influence on flight energetics. Here, I compiled the tracks of migratory birds (196 species, weighing 12–10 350 g) recorded by electronic tags in the last few decades. In flapping birds, migration ranges decreased with body mass, as predicted from rapidly increasing flight cost with increasing body mass. The species with higher aspect ratio and lower wing loading had larger migration ranges. In soaring birds, migration ranges were mass‐independent and larger than those of flapping birds, reflecting their low flight costs irrespective of body mass. This study demonstrates that many animal‐tracking studies are now available to explore the general patterns and the underlying mechanisms of animal migration.  相似文献   

14.
Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (~0.3 kg) and small birds with rounded wings do not use intermittent glides.  相似文献   

15.
Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130°, and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number     was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude ( A ), wing-beat frequency ( f ), and flight speed ( U ). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture—required for gliding and flapping flight—evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.  相似文献   

16.
Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.  相似文献   

18.
Control of movement in the avian shoulder joint is fundamental to understanding the avian wingstroke. The acrocoracohumeral ligament (AHL) is thought to play a key role in stabilizing the glenoid and balancing the pectoralis in gliding flight. If the AHL has to be taut to balance the pectoralis, then it must constrain glenohumeral motion during flapping flight as well. However, birds vary wing kinematics depending on flight speed and behavior. How can a passive ligament accommodate such varying joint movements? Herein, mechanical testing and 3-D modeling are used to link the mechanical properties and morphology of the AHL to its functional role during flapping flight. The bone-ligament-bone complex of the pigeon (Columba livia) fails at a tensile loading of 141 ± 18 N (± s .D., n = 10) or 39 times body weight, which corresponds to a failure stress of 51 MPa, well above expected loads during flight. Simulated AHL length changes, comparisons to glenohumeral kinematics from the literature, and manipulations of partially dissected pigeon specimens all support the hypothesis that the AHL remains taut through downstroke and most of upstroke while becoming slack during the downstroke/upstroke transition. The digital AHL model provides a mechanism for explaining how the AHL can stabilize the shoulder joint under a broad array of humeral paths by constraining the coordination of glenohumeral degrees of freedom.  相似文献   

19.
《Journal of morphology》2017,278(7):936-947
Wing tip slots are a distinct morphological trait broadly expressed across the avian clade, but are generally perceived to be unique to soaring raptors. These slots are the result of emarginations on the distal leading and trailing edges of primary feathers, and allow the feathers to behave as individual airfoils. Research suggests these emarginate feathers are an adaptation to increase glide efficiency by mitigating induced drag in a manner similar to aircraft winglets. If so, we might expect birds known for gliding and soaring to exhibit emarginate feather morphology; however, that is not always the case. Here, we explore emargination across the avian clade, and examine associations between emargination and ecological and morphological variables. Pelagic birds exhibit pointed, high‐aspect ratio wings without slots, whereas soaring terrestrial birds exhibit prominent wing‐tip slots. Thus, we formed four hypotheses: (1) Emargination is segregated according to habitat (terrestrial, coastal/freshwater, pelagic). (2) Emargination is positively correlated with mass. (3) Emargination varies inversely with aspect ratio and directly with wing loading and disc loading. (4) Emargination varies according to flight style, foraging style, and diet. We found that emargination falls along a continuum that varies with habitat: Pelagic species tend to have zero emargination, coastal/freshwater birds have some emargination, and terrestrial species have a high degree of emargination. Among terrestrial and coastal/freshwater species, the degree of emargination is positively correlated with mass. We infer this may be the result of selection to mitigate induced power requirements during slow flight that otherwise scale adversely with increasing body size. Since induced power output is greatest during slow flight, we hypothesize that emargination may be an adaptation to assist vertical take‐off and landing rather than glide efficiency as previously hypothesized.  相似文献   

20.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号