首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
3.
In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types.  相似文献   

4.
Meiotic cell‐cycle progression in progesterone‐stimulated Xenopus oocytes requires that the translation of pre‐existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle‐dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi‐binding element (MBE) and the MBE‐binding protein, Musashi. Our findings indicate that although the cyclin B5 3′ UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3′ UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE‐dependant mRNA translation.  相似文献   

5.
6.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

7.
Wu X  Brewer G 《Gene》2012,500(1):10-21
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.  相似文献   

8.
    
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

9.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号