首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
3.
We reported recently that the inhibition of cysteine-proteases with E-64-d disturbs DNA replication and prevents mitosis of the early sea urchin embryo. Since E-64-d is a rather general inhibitor of thiol-proteases, to specifically target the cysteine-protease previously identified in our laboratory as the enzyme involved in male chromatin remodeling after fertilization, we injected antibodies against the N-terminal sequence of this protease that were able to inhibit the activity of this enzyme in vitro. We found that injection of these antibodies disrupts the initial zygotic cell cycle. As shown in this report in injected zygotes a severe inhibition of DNA replication was observed, the mitotic spindle was not correctly bipolarized the embryonic development was aborted at the initial cleavage division. Consequently, the injection of these antibodies mimics perfectly the effects previously described for E-64-d, indicating that the effects of this inhibitor rely mainly on the inhibition of the cysteine-protease involved in male chromatin remodeling after fertilization. These results further support the crucial role of this protease in early embryonic development.  相似文献   

4.
5.
6.
In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types.  相似文献   

7.
Meiotic cell‐cycle progression in progesterone‐stimulated Xenopus oocytes requires that the translation of pre‐existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle‐dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi‐binding element (MBE) and the MBE‐binding protein, Musashi. Our findings indicate that although the cyclin B5 3′ UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3′ UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE‐dependant mRNA translation.  相似文献   

8.
Sudip Kundu 《Proteins》2018,86(8):827-832
Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.  相似文献   

9.
10.
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.  相似文献   

11.
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Ptennull prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.  相似文献   

12.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

13.
Wu X  Brewer G 《Gene》2012,500(1):10-21
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.  相似文献   

14.
15.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

16.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号