首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nucleic acid duplexes featuring a single alpha-anomeric thymidine inserted into each DNA strand via 3′-3′ and 5′-5′ phosphodiester linkages exhibit local conformational dynamics that are not adequately depicted by conventional restrained molecular dynamics (rMD) methods. We have used molecular dynamics with time-averaged NMR restraints (MDtar) to explore its applicability to describing the conformational dynamics of two α-containing duplexes – d(GCGAAT-3′-3′-αT-5′-5′-CGC)2 and d(ATGG-3′-3′-αT-5′-5′-GCTC)?r(gagcaccau). In contrast to rMD, enforcing NOE-based distance restraints over a period of time in MDtar rather than instantaneously results in better agreement with the experimental NOE and J-data. This conclusion is based on the dramatic decreases in average distance and coupling constant violations (Δd av, J rms, and ΔJ av) and improvements in sixth-root R-factors (R x). In both duplexes, the deoxyribose ring puckering behavior predicted independently by pseudorotation analysis is portrayed remarkably well using this approach compared to rMD. This indicates that the local dynamic behavior is encoded within the NOE data, although this is not obvious from the local R x values. In both systems, the backbone torsion angles comprising the 3′-3′ linkage as well as the (high S-) sugars of the α-nucleotide and preceding residue (α?1) are relatively static, while the conformations of the 5′-5′ linkage and the sugar in the neighboring β-nucleotide (α+1) show enhanced flexibility. To reduce the large ensembles generated by MDtar to more manageable clusters we utilized the PDQPRO program. The resulting PDQPRO clusters (in both cases, 13 structures and associated probabilities extracted from a pool of 300 structures) adequately represent the structural and dynamic characteristics predicted by the experimental data.  相似文献   

2.
The type II and type III collagen α-1 chain N-telopeptides are a nonadecamer with the sequence pEMAGGFDEKAGGAQLGVMQ-NH2 and a tetradecamer with the sequence pEYEAYDVKSGVAGG-NH2, respectively. Their conformations have been studied in CD3OH/H2O (60/40) solution by means of two-dimensional proton nmr spectroscopy. Based on double quantum filtered correlation spectroscopy, total correlation spectroscopy, rotating frame nuclear Overhauser enhancement (ROE) spectroscopy, and nuclear Over-hauser enhancement (NOE) spectroscopy experiments, all resonances were assigned and the conformational properties were analyzed in terms of vicinal NH-Hα coupling constants, sequential and medium-range NOEs (ROEs), and amide proton temperature coefficients. The NOE distance constraints as well as dihedral constraints based on the vicinal NH-Hα coupling constants were used as input parameters for restrained molecular mechanics, consisting of restrained molecular dynamics and restrained energy minimization calculations. The type II N-telopeptide's conformation is dominated by a fused βγ-turn between Phe6 and Ala10, stabilized by three hydrogen bonds and a salt bridge between the side-chain end groups of Glu8 and Lys9. The first 5 amino acids are extended with a much higher degree of conformational freedom. The 2 Gly residues following the turns were found to be highly flexible (hinge-like), leaving the spatial position of the second half of the molecule relative to the fused βγ-turn undefined. In the type III telopeptide, a series of sequential NH(i)-NH(i + 1) ROEs were observed between the amino acids Tyr2 and Ser9, indicating that a fraction of the conformational space is helical. However, the absence of medium-range ROEs and the lack of regularity of the effects associated with α-helices suggest the presence of a nascent rather than a complete helix. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
A cyclic peptide analogue of somatostatin, including the o-aminomethylphenylacetic acid spacer, was studied by the combined use of two-dimensional nmr spectroscopy, distance geometry, and restrained molecular dynamics. Analysis of distances determined from nuclear Overhauser effect (NOE) buildup rates revealed that these were inconsistent with a unique backbone conformation near the spacer. Assuming that the conformational heterogeneity is localized to the spacer, the NOE distances measured for the remaining part of the molecule were used to generate a large number of structures with the distance geometry algorithm, which were then refined by restrained energy minimization. Four classes of structures emerged, which together account for all observed NOEs. A representative structure of each class was further refined with the restrained molecular dynamics technique, and shown to be stable on a 20-ps time scale. The flexibility of the spacer was examined by simulating interconversions induced by an appropriate restraining potential. As a result, the explanation for the lack of somatostatin activity of the analogue studied was reconsidered.  相似文献   

4.
We report the conformational analysis of a series of cyclic hexapeptides related to the hormone somatostatin utilizing 1H NMR spectroscopy and NOE restrained molecular dynamics. The conformational preferences and results from biological analysis of these analogs (previous paper) allow for refinement of the current understanding of the structure-activity relationship of somatostatin. For most of the molecules examined, a beta II' turn about the D-tryptophan-lysine residues, postulated to be required for biological activity, was present. From the NOE restrained molecular dynamics, it can be seen that the turn structure is important for the maintenance of the proper orientation of the side chains of the adjacent phenylalanine, tryptophan and lysine. The biologically active analogs have the side chains of lysine and D-tryptophan extended away from the 18-membered ring in close proximity to each other for a significant portion of the dynamic simulations. Although other conformations are accessible and monitored during the simulations, we believe this is important for biological recognition. The absence of the beta II' turn at the D-tryptophan-lysine disrupts this side chain array producing inactive molecules. The role of the bridging region, the Phe-Pro dipeptide, is to stabilize the beta II' turn and help maintain the proper orientation of the biologically important side chains.  相似文献   

5.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

6.
The conformational preference of the disaccharide alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) (1) about the glycosidic torsion angles, phi and psi, was studied by NMR NOESY spectroscopy and molecular mechanics calculations. The NOE data were consistent with either of two distinct conformations close to minima on a calculated phi/psi potential energy surface. Starting from the lowest energy conformation, a 1-ns molecular dynamics (MD) trajectory was computed in vacuo, from which the NOE curves were simulated and compared to the experimentally observed NOESY data.  相似文献   

7.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

8.
Abstract

Peptidoglycan recognition proteins (PGRPs) belong to the family of pattern recognition receptor, represent the major constituent of innate immunity. Although PGRPs are structurally conserved through evolution, their involvement in innate immunity is different in vertebrates and invertebrates. They are highly specific towards recognition of ligands and can hydrolyze bacterial peptidoglycans (PGNs). Zebrafish PGRPs (zPGRPs) have both peptidoglycans lytic amidase activity and broad-spectrum bactericidal activity, but far less is known about how these receptors recognize these microbial ligands. Such studies are hindered due to lack of structural and functional configuration of zPGRPs. Therefore, in this study, we predicted the three-dimensional structure of zPGRP2 through theoretical modeling, investigated the conformational and dynamic properties through molecular dynamics simulations. Molecular docking study revealed the microbial ligands, that is, muramyl pentapeptide–DAP , muramyl pentapeptide–LYS, muramyl tripeptide–DAP, muramyl tripeptide–Lys, muramyl tetrapeptide–DAP, muramyl tetrapeptide–LYS and tracheal cytotoxin interacts with the conserved amino acids of the ligand recognition site comprised of β1, α2, α4, β4 and loops connecting β1 ? α2, α2 ? β2, β3 ? β4 and α4 ? α5. Conserved His31, His32, Ala34, Ile35, Pro36, Lys38, Asp60, Trp61, Trp63, Ala89, His90, Asp106, His143 and Arg144 are predicted to essential for binding and provides stability to these zPGRP–PGN complexes. Our study provides basic molecular information for further research on the immune mechanisms of PGRP’s in Zebrafish. The plasticity of the zPGRP’s binding site revealed by these microbial ligands suggests an intrinsic capacity of the innate immune system to rapidly evolve specificities to meet new microbial challenges in the future.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   

10.
Abstract

Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data.

Registry numbers:

adenylyl-(3′ →5′)-adenylyl-(3′ →5′)-adenosine [917-44-2]

adenylyl-(3′ →5′)-uridylyl-(3′ →5′)-guanosine [3494-35-7]  相似文献   

11.
Two dipeptide isosteres 7-exo-BTG (1) and 7-endo-BtA (2), belonging to the new class of gamma/delta-bicyclic amino acid BTAa, were inserted into an 11-residue peptide deriving from the Bowman Birk Inhibitor (BBI) class of serine protease inhibitors, and the conformational properties of these modified peptides have been studied by NMR and molecular modelling. The dipeptide isostere 7-endo-BtA [(1R,4S,5R,7R)-4-endo-methyl-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-endo-carboxylic acid] (2), derived from L-alanine and meso tartaric acid, gave rise to the modified BBI peptide 5 whose structure was very similar to that of the original peptide 3, suggesting a possible reverse turn inducing property for this dipeptide isostere.  相似文献   

12.
A new constraint potential is proposed for the refinement of the three-dimensional structure of biomolecules in solution from nmr data. It is based on the nuclear Overhauser effect (NOE) intensity calculations, taking into account the spin diffusion phenomenon. For restrained energy minimization or molecular dynamics techniques, a constraint potential term expressed as a function of the negative inverse of the sixth power of the NOE intensities (NOE?1/6) is added to the classical potential energy function. The properties of this new NOE constraint potential are discussed and compared to those of a harmonic NOE intensity potential. The method integrated in the molecular modeling program GROMOS is tested on the regular α-helical structure of a decaglycylpeptide.  相似文献   

13.
Two cyclic hexapeptides, cyclo[Ala1-D -Ala2-Ser3-Phe4-Gly5-Ser6] and cyclo[Ala1-Gly2-Ser3-Phe4-Gly5-Ser6], derived from the loop portion of the C′C″ ridge of CD4, were characterized by high-resolution nmr spectroscopy and simulated annealing studies. In DMSO-d6 both of these peptides display a single conformer on the nmr time scale with two intramolecular H-bond (1 ← 4) stabilized β-turns at positions 2–3 and 5–6. The nmr derived distance constraints were used in simulated annealing calculations to generate the solution structures. These structures adopt energetically comparable conformational substates that are not resolvable on the nmr time scale. In aqueous solution, the H-bond stabilized β-turn conformation for cyclo [Ala-D -Ala-Ser-Phe-Gly-Ser] is no longer the predominant structural form. Structures generated using molecular dynamics simulations with no experimental constraints were compared with those from nmr analysis. The correlation between these two sets of structures allows the use of molecular simulations as a predictive tool for the conformational analysis of small peptides. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.  相似文献   

15.
The biologically active conformation of N-(6-phenylhexanoyl)glycyl-tryptophan amide (GB-115), a highly active cholecystokinin-4 retro dipeptide analogue with the anxiolytic activity, has been studied using the conformational analysis by 1H NMR spectroscopy in solution and the method of sterically restricted analogues. A study of the relationship between the preferable conformation in solution and the anxiolytic activity in the series of GB-115 derivatives showed that the biologically active conformation of this compound is the β-turn. Based on the data on the nuclear Overhauser effect 1H NMR spectroscopy, this structure was identified as the β-turn of type II. Subsequent synthesis and study of the pharmacological activity of novel sterically restricted analogues of dipeptide GB-115: (2S)-2-{(3R)-3-[(6-phenylhexanoyl)amino]-2-oxopyrrolidine-1-yl}-3-(1H-indole-3-yl)propionic acid ethyl ester, N-(6-phenylhexanoyl)glycyl-N α-methyltryptophan ethyl ester, (2S)-2-[(10,11-dihydro-5H-dibenzo[b, f]azepin-5-ylcarbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester, and (2S)-2-[({3-[(ethoxycarbonyl)amino]-10,11-dihydro-5H-dibenzo[b, f]azepin-5-yl}carbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester confirmed that the β-turn of type II is the active conformation of GB-115.  相似文献   

16.
S Lande 《Biopolymers》1969,7(6):879-886
The amide bond in L ,L - and L ,D -α-chloropropionylalanine methyl ester is shown to be trans by molar polarization and infrared spectroscopy. In these dipeptide diastereoisomer analogues, therefore, differences in physical properties, i.e., melting points, crystalline forms, gas chromatographic mobilities, etc., depend on preferred molecular conformations and not peptide bond configuration. Nuclear magnetic resonance spectra of both compounds were identical, indicating that no major chemical environment differences exist, which might have resulted from dissimilar side group interactions. Based on the data reported here and those of others, most dipeptide conformations can be eliminated because of contradiction with limits set by experimental or theoretical considerations. Of the remaining conformational possibilities, a single pair accounts for observed physical differences in dipeptide diastereoisomers, free or blocked. The preferred form contains α-hydrogens trans to each other and in the plane of the peptide bond. In this conformation, R1–R2 and amino–carboxyl distances are minimal in L ,D diastereomers and maximal in L ,L forms.  相似文献   

17.
Summary The structure of the ColE1 repressor of primer (rop) protein in solution was determined from the proton nuclear magnetic resonance data by a combined use of distance geometry and restrained molecular dynamics calculations. A set of structures was determined with low internal energy and virtually no violations of the experimental distance restraints. Rop forms homodimers: Two helical hairpins are arranged as an antiparallel four helix bundle with a left-handed rope-like twist of the helix axes and with left-handed bundle topology. The very compact packing of the side chains in the helix interfaces of the rop coiled-coil structure may well account for its high stability. Overall, the solution structure is highly similar to the recently determined X-ray structure (Banner, D.W., Kokkinidis, M. and Tsernoglou, D. (1987)J. Mol. Biol.,196, 657–675), although there are minor differences in regions where packing forces appear to influence the crystal structure.Abbreviations rop repressor of primer - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - NOESY NOE spectroscopy - RAN Set Structures generated from random choice of the dihedrai angles - HEL Set Structures generated from random choice of the dihedral angles restricted to ranges allowed for helices - MD molecular dynamics - EM energy minimization - RMSD root-mean-square deviation of atomic positions  相似文献   

18.
Abstract

The solution structure of RNase T1 and its complexes with 2′-GMP and. 3′-GMP have been investigated by combined use of 2D-NMR spectroscopy and restrained molecular dynamics calculations (MD). An analysis of the nuclear Overhauser effects (NOEs) observed indicates the presence of one a helix as well as of two antiparallel β sheets. Interaction of the nucleotides with the active site leads to changes of the backbone conformation of the amino acids involved. However, the interaction between the protein and 3′-GMP is not as strong as the interaction with 2′-GMP, possibly because of weaker binding.  相似文献   

19.
The purpose of the present study was to determine the confidence with which the small number of 1H NMR nuclear Overhauser effect (NOE) distance constraints measurable across glycosidic linkages in oligosaccharides could be used for solution conformational analysis. This was assessed by use of these constraints in restrained molecular mechanical minimization of the tetrasaccharide Gal beta 1----4(Fuc alpha 1----3)Glc-NAc beta 1----3Gal, a model compound of the Lewis-X antigenic determinant. This presents a particularly severe test case in view of extreme resonance overlap and a dearth of inter-residue distance constraints. It is concluded that these constraints, when used in conventional restrained minimization, result in the generation of 'virtual conformations' and local minima about glycosidic linkages. However, these restraints are nevertheless found to be useful in the initial stages of a conformational analysis strategy involving restrained minimization combined with dynamical simulated annealing to define more accurately the global minimum energy configuration, together with molecular dynamics simulation to explore conformational mobility about this minimum. Theoretical ROE values calculated over the time course of the MD simulation, using a formalism appropriate for the time scale of the internal motion, are compared with those obtained experimentally in the oligosaccharide.  相似文献   

20.
The DNA octamer [d(GTATAATG].[(CATATTAC)], containing the prokaryotic upstream consensus recognition sequence, has been examined via proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra. All proton resonances, except those of H5' and H5" protons, were assigned. A temperature dependence study of one-dimensional nuclear magnetic resonance (NMR) spectra, rotating frame 2D NOE spectroscopy (ROESY), and T1 rho measurements revealed an exchange process that apparently is global in scope. Work at lower temperatures enabled a determination of structural constraints that could be employed in determination of a time-averaged structure. Simulations of the 2QF-COSY cross-peaks were compared with experimental data, establishing scalar coupling constant ranges of the individual sugar ring protons and hence pucker parameters for individual deoxyribose rings. The rings exhibit a dynamic equilibrium of N and S-type conformers with 80 to 100% populations of the latter. A program for iterative complete relaxation matrix analysis of 2D NOE spectral intensities, MARDIGRAS, was employed to give interproton distances for each mixing time. According to the accuracy of the distance determination, upper and lower distance bounds were chosen. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force-field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 25 picoseconds were performed, utilizing 184 experimental distance constraints and 80 torsion angle constraints; three different starting structures were used: energy minimized A-DNA, B-DNA, and wrinkled D-DNA, another member of the B-DNA family. Convergence to similar structures obtained with root-mean-square deviations between resulting structures of 0.37 to 0.92 A for the central hexamer of the octamer. The average structure from the nine different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and exhibited a substantial improvement in the 2D NOE sixth-root residual index in comparison with the starting structures. An approximation of the structure in the terminal base-pairs, which displayed experimental evidence of fraying, was made by maintaining the structure of the inner four base-pairs and performing molecular dynamics simulations with the experimental structural constraints observed for the termini.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号