首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maxillary and mandibular molars of the American opossum, Didelphis virginiana L., were viewed in the scanning electron microscope (SEM) after acid-etching or after cutting and acid-etching. Observations were made on enamel prism patterns as they relate to functional properties of the tooth at a particular site. Molars at different stages of wear were also observed under a dissecting microscope; worn surfaces were correlated with function and enamel ultrastructure. Pounding surfaces of molar cusps wear more rapidly than near-vertical shearing surfaces or crushing basins (i.e. the trigon and talonid basin). Pounding surfaces are subjected to abrasion by food and arc not normally involved in tooth-tooth contact. Near-vertical shearing surfaces and basins used for crushing do experience tooth-tooth contact, but are surprisingly more resistant to wear. Prisms at pounding sites approach the occlusal surface at a near 90° angle and are surrounded with very thick interprismatic (IP) enamel parallel to the occlusal surface of the tooth. The pounding pattern is present at tips of cusps and at occlusal surfaces of ridges of the tooth. At near-vertical shearing surfaces, the prisms approach the outer surface obliquely and are surrounded with IP crystals which are perpendicular to the vertical surface. The angle between prismatic and IP enamel in these patterns is 60–90° in a cervical to occlusal direction. In basins of the tooth used principally for crushing and some shearing, IP enamel is perpendicular to the changing slope of the basin and the prisms are usually at a 55–65° angle to the IP enamel. When the pounding and shearing-crushing patterns meet at a ridge, a distinct seam is observed. Pounding forces occur parallel to the long axis of the prisms and perpendicular to the thick IP enamel (i.e. perpendicular to the long axis of the IP crystals) lying on either side of the prisms. Shearing and crushing forces occur at an oblique angle to the prism, and interprismatic enamel is more evenly distributed about the prism. A spiral pattern is found at the bottoms of the trigon and talonid basins, but not at the bottom of the trigonid which is a non-occluding basin. It is concluded that the differential rates of wear of the enamel surfaces are necessary in maintaining the sharp cutting edges and effective crushing basins of the tribosphenic molar, and the ultrastructural arrangements of the enamel prisms are of functional significance.  相似文献   

2.
The anisotropic fracturing and differential wear properties of enamel microstructure represent factors that can obscure the predictive relationship between dental microwear and diet. To assess the impact of enamel structure on microwear, this in vitro experimental study examines the relative contributions to wear of three factors: 1) species differences in microstructure, 2) direction of shearing force relative to enamel prisms and crystallites, and 3) size of abrasive particles. Teeth of Lemur, Ovis, Homo, and Crocodylus, representing, respectively, the structural categories of prismatic patterns 1, 2, and 3 and nonprismatic enamel, were abraded by shearing forces (forces having a component directed parallel to abraded surfaces) and examined by scanning electron microscopy. Striation width increased with particle size for nonprismatic, but not for prismatic, specimens. Direction of shear relative to prism and crystallite orientation had a significant influence on striation width in only some prismatic enamels. The different responses of prismatic and nonprismatic enamels to abrasion reflect the influence of structure, but at the level of organization of crystallites rather than prisms per se. Such interactions explain in part the inability of striation width to discriminate among animals with different dietary habits. Heteroscedasticity and deviations from normality also may confound parametric analyses of microwear variables. Variation in crystallite orientation in prismatic enamels may contribute to optimal dental function through the property of differential wear in functionally distinct regions of teeth.  相似文献   

3.
The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X‐ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X‐ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Rat molar enamel has been studied by sectioning the enamel along various planes, and observing the etched surfaces in the SEM. It was found that the prism pattern was much more variable than in rat incisor enamel. Regions without prism decussation seemed to dominate in the occlusal half of the molars. Where present, prism decussation was of the uniserial lamellar type, but it varied considerably in distribution, extent, and distinctness. Prism decussation seemed to have a predilection for the cervical enamel, and was almost absent in the enamel on the occlusal surface. The interprismatic substance showed a characteristic configuration: In the inner enamel it appeared in the form of radially oriented sheets, which tended to delimit radially directed, single lines of prisms. In regions with prism decussation these single lines of prisms encompassed prisms belonging to different prism lamellae. In the outer part of the enamel the interprismatic substance exhibited a honeycomb appearance. The similarities and differences between the prism patterns of rat incisor and molar enamel may be of importance for understanding the mechanisms of amelogenesis, especially for the recognition of factors controlling the movement of ameloblasts.  相似文献   

5.
The angle at which enamel prisms approach the wear surface holds information with regard to the stiffness of the tissue, as well as its wear resistance. Hence, analyses of prism orientation may shed light on questions of whether the thick enamel in hominins has evolved to confer stiffness or wear resistance to the teeth and may thus inform about the diet and behavioural ecology of these species. This was explored for Paranthropus robustus and Australopithecus africanus, whereby a distinction was made between prisms at the Phase I and Phase II facets. The results were compared with those obtained for Theropithecus, Macaca, and Potamochoerus for whom behavioural and/or experimental data are available, and were interpreted against simple mechanical principles. The South African hominins differ significantly in their relationships between wear facets and prism angulations. Teeth of P. robustus are better adapted to more vertical loads during mastication (Phase I), whereas those of A. africanus are better adapted to cope with more laterally-directed loads (Phase II) commonly associated with roll-crush and mastication. Overall, teeth of P. robustus appear stiffer, while those of A. africanus seem more wear resistant.  相似文献   

6.
Development, structure and function of rhinoceros enamel   总被引:1,自引:0,他引:1  
Vertical enamel prism decussation in the inner-layer enamel of rhinoceroses occurs as the result of vertical translation, in opposite senses, of zones of ameloblasts, which begins very shortly after amelogenesis commences at the enamel-dentine junction. Prisms in the centre of the decussating zones are stacked in the Pattern 3 arrangement. Zone boundary prisms adopt intermediate orientations, are locally nearly perpendicular to the enamel surface, and have a cylindrical, Pattern 1 cross-section. Decussation also continues in the outer-layer enamel, but the prisms all have occlusal-going courses: the occlusal-going zones of the inner enamel continue as the more occlusally oriented zones of the outer layer. Abrasion resistance to diamond polishing and soft abrasive projectile erosion (air-polishing with NaHCOs) and resistance to ion beam erosion is greater with distance from the nearest prism boundary discontinuity. Polished surface areas containing longitudinally sectioned prisms are more prone to 'air-polishing' and 'airbrading' erosion than areas with transversely sectioned prisms. These observed relationships fully explain the relief developed at natural wear surfaces.  相似文献   

7.
This study describes the molar enamel microstructure of seven lemurid primates: Hapalemur griseus, Varecia variegata, Lemur catta, Lemur macaco, Lemur fulvus rufus, Lemur fulvus fulvus, and Lemur fulvus albifrons. Contrary to earlier accounts, which reported little or no prism decussation in lemurid enamel, both Lemur and Varecia molars contain a prominent inner layer of decussating prisms (Hunter-Schreger bands), in addition to an outer radial prism layer, and a thin, nonprismatic enamel surface layer. In contrast, Hapalemur enamel consists entirely of radial and, near the surface, nonprismatic enamel. In addition, for all species, prism packing patterns differ according to depth from the tooth surface, and for all species but Varecia (which also has the thinnest enamel of any lemurid), average prism area increases from the enamel-dentine junction to the surface; this may be a developmental solution to the problem of accommodating a larger outer surface area with enamel deposited from a fixed number of cells. Finally, contradicting some previous reports, Pattern 1 prisms predominate only in the most superficial prismatic enamel. In the deeper enamel, prism cross-sections include both closed (Pattern 1) and arc-shaped (Pattern 2 or, most commonly, Pattern 3). This sequence of depth-related pattern change is repeated in all taxa. It should also be emphasized that all taxa can exhibit all three prism patterns in their mature enamel. The high degree of quantitative and qualitative variation in prism size, shape, and packing suggests that these features should be used cautiously in phylogenetic studies. Hapalemur is distinguished from the other lemurids by unique, medially constricted or rectangular prism cross-sections at an intermediate depth and the absence of prism decussation, but, without further assessment of character polarity, these differences do not clarify lemurid phylogenetic relations. Some characters of enamel microstructure may represent synapomorphies of Lemuridae, or of clades within Lemuridae, but homoplasy is likely to be common. Homoplasy of enamel characters may reflect functional constraints. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Slightly etched prisms of human dental enamel surfaces were examined in the scanning electron microscope. The crystals in the central region of prisms showed a denser arrangement, similar to the crystals on the periphery, which determine their form here. A crevice-like space could be observed between the central and the peripheral region of a prism. The prisms on the enamel surface showed a wide variety in shape being either of fish-scale or key-hole form, in other places fully irregular. There was no uniform prism on a single tooth, and an interprismatic substance was never found. On the surface of a deciduous tooth a prismless enamel surface was observed consisting of edges of crystallites, which did not unite to prism formation.  相似文献   

9.
Pretribosphenic dryolestoid molars are characterized by a reversed triangular alignment of the “primary trigon” (formed by the paracone, metacone and stylocone) and trigonid crucial for the embrasure shearing process. These molars are abraded along the protocristid and paracristid, and show a typical wear pattern with mesially and distally sloping dentine fields due to their thin enamel. The wear pattern of lipotyphlan and didelphid tribosphenic molars with considerably thicker enamel does not show this sloping. In dryolestoid molars two directions of striations occur. Steeper striations oriented linguo-buccally are present on facet 1 below the protocristid, and about 10° less inclined striations of the same direction have been observed near the talonid base. This reflects the railing function of the hypoflexid for the paracone of the corresponding upper molar. Facet 3 in the hypoflexid gets steeper with progressive wear, whereas facets 1 and 2 on the mesial and distal sides of the trigonid are flattened during wear. In the masticatory process the hypoflexid has mainly a shearing function with a crushing component because of its lesser inclination than the functional shearing surfaces below the trigonid crests. Striations on the exposed dentine field along the paracristid and in the guiding groove of facet 3 indicate that these two surfaces were formed by attrition (tooth to tooth contact). The exposed dentine fields at the cusp apices and along the protocristid are gauged and therefore must be a result of abrasion (tooth to food contact).  相似文献   

10.
扫描电镜分析牙齿釉质结构方法的讨论   总被引:3,自引:2,他引:1  
通过扫描电镜对大熊猫牙齿釉质结构的三维观察与比较,结果表明:在同一枚牙齿上,不同部位的釉质切面,釉柱截面的形状、大小以及排列等,有不同的现象.因此在用上述特征描述时,应对所有要比较的样品,须精确地统一在相同的部位.本文以多次实验结果,表明了严格定位取样的重要性.  相似文献   

11.
The isolated adult teeth of titanosaurian sauropods from the Upper Cretaceous Bissekty Formation at Dzharakuduk, Uzbekistan, differ little in overall structure but show considerable variation in enamel sculpturing and wear patterns. The crown shape of unworn juvenile teeth ranges from lanceolate to conical. Most specimens have enamel texture resembling crumpled paper or completely smooth enamel. Longitudinal grooves along the mesial and distal edges are present on only a few tooth crowns and might be developed on both the labial and lingual sides. Among 252 worn tooth crowns there are eight variants of wear patterns, all possible combinations of 0–2 apical and 0–2 lateral wear facets. The most common is wear pattern A1L0 (one apical facet, no lateral facets; 62.7%). The next most common variant has two apical and no lateral facets (A2L0, 12.3%). These apical wear facets include the primary wear facets, which are produced by an opposing functional tooth, and secondary wear facets, which are produced by a replacing upper tooth coming into contact with the functional lower tooth at a late wear stage. The relative abundance of tooth crowns with two apical wear facets possibly suggests incipient development of a tooth battery in the Bissekty titanosaur.  相似文献   

12.
Abstract

Dental wear facets on the occlusal surface of premolars and molars are traces of their main function, the mastication and therefore reflect masticatory movements and also paramasticatory (i.e. non-dietary use of teeth) behavior. Here we present the Modular Wear Facet Nomenclature applicable to most mammalian dentitions. Topographic positions of wear facets in relation to the major cusps and crests of the teeth are used to designate the areas of the occlusal surface the facets occupy (e.g. their mesial, distal, lingual, or buccal position). Previous published systems for labeling wear facets have been inconsistent with each other. Therefore, we provide a synoptic review of the most widely-used terminologies, and introduce the alternative Modular Wear Facet Nomenclature. This nomenclature aims to overcome the difficulties caused by the existing inconsistent wear facet terminologies. Our new approach is applicable to dentitions where the occlusal morphology does not change significantly for most of the lifetime of the animal. In those dentitions, the primary occlusal surfaces are not significantly modified as wear facets become more extensive with wearing. This appears to be a common pattern in pre-tribosphenic, tribosphenic molars, and the teeth derived from tribosphenic precursors (e.g. bunodont molar morphologies). In teeth where the secondary occlusal surface is functionally intensely modified (i.e. high-crowned and evergrowing teeth with large areas of dentine exposed) any facet labeling system appears to be challenging, since the identification of individual facets is blurred and their spatial position may be indeterminable.  相似文献   

13.
Summary Serial etching of cross-sectioned prisms in undecalcified adult marsupial enamel from different species, revealed distinct cylindrical acid-resistant fibrils that were demonstrable by light microscopy and by scanning electron microscopy. No fibrils were found in the enamel of Vombatus.The fibrils and the organic matrix in the remainder of the enamel stain differently. The fibrils project from the center of prisms or the borderline between prisms and interprismatic substance.It is concluded that the fibrils are chemically different from the organic matrix in the enamel, that they constitute the compact, homogenous, and morphologically well defined organic contents of the tubules in adult marsupial enamel.Since most of the material was obtained from dry museum crania, it is concluded that the fibrils are not destroyed by prolonged drying.The scanning electron micrographs were taken at the Electron Microscopical Unit for Biological Sciences, Oslo, Norway.  相似文献   

14.
In many mammalian species, the progressive wearing down of the teeth that occurs over an individual's lifetime has the potential to change dental function, jaw movements, or even feeding habits. The orientation of phase-I wear facets on molars reveals the direction of jaw movement during the power stroke of mastication. We investigated if and how molar wear facets change with increasing wear and/or age by examining a mixed longitudinal dataset of mandibular tooth molds from wild Propithecus edwardsi (N = 32 individuals, 86 samples). Measurements of the verticality of wear facets were obtained from three-dimensional digital models generated from μCT scans. Results show that verticality decreases over the lifetime of P. edwardsi, a change that implies an increasingly lateral translation of the jaw as the teeth move into occlusion. A more transverse phase-I power stroke supports the hypothesis that these animals chew to maximize longevity and functionality of their teeth, minimizing the "waste" of enamel, while maintaining sharp shearing crests. Results of this study indicate that wear facet verticality is more closely correlated with age than overall amount of tooth wear, measured as area of exposed dentin, suggesting that age-related changes in cranial morphology may be more responsible for adjustments in jaw motion over the lifetimes of Propithecus than wear-related changes inthe shape of occluding teeth. Finally, the rate of decrease in wear facet verticality with age is greater in males than in females suggesting differences in development and/or access to resources between the sexes in this species.  相似文献   

15.
The dentition of Uromastyx hardwicki was examined in a series of carefully prepared dry skulls and was found to be very different from that of other agamid lizards. The anatomy of the dentition undergoes great changes from the time of hatching to advanced age, but no evidence of tooth replacement could be found. Extension of the tooth rows by addition of larger teeth posteriorly, together with elongation of the premaxilla, and a characteristic pattern of wear are responsible for the condition seen in aged specimens.
The structure of the dental tissues was investigated by means of a variety of histological techniques including scanning electron microscopy and it is established that the enamel has prismatic structure like that of mammalian enamel. The mode of formation of enamel with and without prisms is described and the occurrence and significance of prismatic structure in reptilian dental enamel discussed.  相似文献   

16.
Abstract

Many types of wear facets can be found in mammalian teeth. Some are related to the initial surface, others use the cross-section of the enamel as the main tool. In primary occlusal surfaces facets mark the gradual wear, that are related to a relatively late ontogeny. Facets in teeth with secondary occlusal surfaces, however, represent specific arrangements of crests of enamel and dentine. Such facets require some initial wear to become fully functional. The tooth morphology guarantees such facets to be effective for a long period of time. Therefore they can be discriminated as specialized facets. From the different types of facets three specialized ones were selected, blade facets, rasp-facets, and nipper-facets, because they ate widely distributed, function differently, and are comparable with mechanical tools. They are long lasting and differ in the amount of exposed dentine. The amount of dentine is used to differentiate phases during late ontogeny, the part of the life history, when teeth are exposed to wear. Consequently the various types of facets can be related to different ontogenetic phases. The relevant phases are prolonged at the cost of other ontogenetic phases. Therefore, the various specialized wear facets represent heterochronies within the ontogeny of teeth.  相似文献   

17.
Summary Teeth of three macropod species, M. giganteus, W. bicolor and P. concinna, have been studied using the techniques of light microscopy, scanning- and transmission-electron microscopy and hardness measurement. Light microscope observations showed that the teeth of these species had a translucent enamel region close to the dentine and an outer opaque enamel region at the tooth's surface. These regions were not related to the presence or absence of tubules which are a characteristic feature of marsupial enamel. Hardness tests showed that the opaque enamel was softer than the translucent enamel. Scanning electron microscope observations revealed that there was no correlation between any particular prism packing or orientation and the opaque and translucent enamel regions. Transmission electron microscope observations showed that the translucent enamel region consisted of well defined prisms and well packed, lath-like crystals, whereas the opaque enamel was disrupted by voids (which ranged in size from enlarged micropores to about 2 m in diameter in extreme cases) between crystals and some randomly oriented, loosely packed crystals. This disruption within the opaque enamel region was more common at prism boundaries but pockets of disrupted enamel were also found within prisms and interprismatic regions. The opacity of the enamel was caused by scattering of light from the voids. The ultrastructure of the opaque enamel region indicated that this region was hypomineralized; hardness tests and polarized light microscope observations were consistent with these results.  相似文献   

18.
The power stroke of mastication has been traditionally divided into two parts, one which precedes centric occlusion, and the other which follows it-"Phase I" and "Phase II," respectively. Recent studies of primate mastication have called into question the role of Phase II in food processing, as they have found little muscle activity or accompanying bone strain following centric occlusion. That said, many researchers today look to Phase II facets to relate diet to patterns of dental microwear. This suggests the need to reevaluate microwear patterns on Phase I facets. Here we use texture analysis to compare and contrast microwear on facets representing both phases in three primate species with differing diets (Alouatta palliata, Cebus apella, and Lophocebus albigena). Results reaffirm that microwear patterns on Phase II facets better distinguish taxa with differing diets than do those on Phase I facets. Further, differences in microwear textures between facet types for a given taxon may themselves reflect diet. Some possible explanations for differences in microwear textures between facet types are proposed.  相似文献   

19.
Jaw movement and tooth use in recent and fossil primates   总被引:2,自引:0,他引:2  
Masticatory movements and molar wear facets in species of Tupaia, Galago, Saimiri, and Ateles have been examined using cinefluorography and occlusal analysis. The molars have been compared with those of a fossil series: Palenochtha, Pelycodus and Aegyptopithecus. The extant primates are almost identical in their feeding behaviour, the movements and timing of the masticatory cycle. Food is first puncture-crushed where the cycle is elongated, the power stroke attenuated and abrasion facets are produced on the molars. Chewing follows, the movements are more complex, the power stroke has two distinct parts and attrition facets are produced. In the primitive forms (Tupaia, Palenochtha), shearing blades, arranged in series (en echelon) were used to cut the food during the first part (Phase I) of the power stroke as the lower teeth move into centric occlusion. This mechanism has been progressively replaced by a system of blade-ringed compression chambers which cut and compartmentalise the food in Phase I. This is followed by an anteromedially and inferiorly directed movement away from centric occlusion (Phase II) in which the food is ground. In both extant and fossil series there has been a clear trend towards the elongation of Phase II with a corresponding reduction in Phase I. These results suggest that the observed changes in the morphology of the jaw apparatus have probably occurred within the limits set by a pre-existing behavioral pattern.  相似文献   

20.
The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin‐enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin–enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin–enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample. Am. J. Primatol. 72:481–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号