首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

2.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 μT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0–25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data. © 1993 Wiley-Liss. Inc.  相似文献   

4.
Two types of dosimeters for measuring human exposure to 60 Hz magnetic fields were compared. Fifty adults wore the single-axis, wrist model AMEX (average magnetic field exposure system) and the triple axis, hip-pocket or pouch model AMEX-3D meters for 2 days. Ninety-six percent of the tests were accomplished without apparent dosimeter failure. The average root mean square magnetic flux density measurements with the AMEX3D (mean = 0.10 μT, S.D. = 0.07, range = 0.03 ? 0.31) were significantly higher than with the AMEX meter (mean = 0.07 μT, S.D. 0.05, range = 0.02 ? 0.27 μT) (t test, P < 0.01). There was substantial correlation between the AMEX and the AMEX-3D measurements (Pearson's correlation coefficient = 0.65, P < 0.01) but poor concordance (Intraclass correlation coefficient = ? 0.25). These results suggest that there is a wide variation in exposure to extremely low frequency magnetic fields in the population. Magnetic field measurements with the AMEX-3D are nearly always higher than with the AMEX dosimeters. Caution is advised when comparing magnetic field measurements made with different types of dosimeters. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The incomplete understanding of the relation between power-frequency fields and biological responses raises problems in defining an appropriate metric for exposure assessment and epidemiological studies. Based on evidence from biological experiments, one can define alternative metrics or effects functions that embody the relationship between field exposure patterns and hypothetical health effects. In this paper, we explore the application of the “effects function” approach to occupational exposure data. Our analysis provides examples of exposure assessments based on a range of plausible effects functions. An EMDEX time series data set of ELF frequency (40–800 Hz) magnetic field exposure measurements for electric utility workers was analyzed with several statistical measures and effects functions: average field strength, combination of threshold and exposure duration, and field strength changes. Results were compared for eight job categories: electrician, substation operator, machinist, welder, plant operator, lineman/splicer, meter reader, and clerical. Average field strength yields a different ranking for these job categories than the ranks obtained using other biologically plausible effects functions. Whereas the group of electricians has the highest exposure by average field strength, the group of substation operators has the highest ranking for most of the other effects functions. Plant operators rank highest in the total number of field strength changes greater than 1 μT per hour. The clerical group remains at the lowest end for all of these effects functions. Our analysis suggests that, although average field strength could be used as a surrogate of field exposure for simply classifying exposure into “low” and “high,” this summary measure may be misleading in the relative ranking of job categories in which workers are in “high” fields. These results indicate the relevance of metrics other than average field strength in occupational exposure assessment and in the design and analysis of epidemiological studies. Bioelectromagnetics 18:365–375, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
A comparison is made of induced current densities, electric fields, and rates of energy deposition during in vitro studies with linearly and circularly polarized, extremely low frequency magnetic fields for a cylindrical volume of culture medium.  相似文献   

7.
The effects of 60 Hz magnetic fields of 5 μT (50 mG) or less on biological structures holding magnetite (Fe3O4) are shown to be much smaller than that from thermal agitation; hence such interactions cannot be expected to be biologically significant. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Abstract

Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3?µT, 20?µT and 75?µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.  相似文献   

9.
A small, lightweight meter has been developed for magnetic-field measurements, particularly those needed for exposure-assessment purposes. This meter, known as the AMEX-3D, continuously measures all three axes of magnetic-flux density and electronically combines the data into a single estimate of cumulative exposure to the root-mean-square (rms) resultant flux density. The AMEX-3D weighs about 120 g, measures 2.7 cm x 5.1 cm x 10.2 cm, and is battery powered. Two panel-mounted jacks are provided for measuring battery voltage and for reading cumulative exposure data from the unit. The instrument has, within 3 dB, a flat response to magnetic flux densities at all frequencies in its 30-1,000 Hz bandwidth. A detailed analysis of error sources in the AMEX-3D leads to an estimate of +/- 20% as the accuracy of the instrument over its dynamic range, which extends from 0.02 to 15 microT. The AMEX-3D was tested in the field by asking electric-utility distribution linemen to wear AMEX-3D and EMDEX meters simultaneously while working. Agreement between the two measures of exposure was excellent.  相似文献   

10.
A three-year investigation was conducted on the biological effects of high-intensity electric field exposures of rats for up to 18% of their life span. Two hundred and forty adult male rats, divided into groups of 20 animals each, were exposed at ground potential for 8 h/ day at 25-kV/m and 100-kV/m 50-Hz electric fields or were sham exposed for 280, 440, and 1240 h. The corresponding ages at sacrifice were 140, 164, and 315 days. An additional group of 40 rats was investigated under similar experimental conditions after 440 h of exposure at floating potential. Independent of exposure duration, mode of grounding, and field strength, no statistical differences in body weight, morphology, and histology of the liver, heart, mesenteric lymph nodes, and blood variables (hematology and serum chemistry) were found in comparison with sham-exposed animals. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (TS)at sacrifice varied widely among experimental animals in the same group but did not differ in exposed compared with sham-exposed rats. A nonsignificant tendency toward a decrease in the testes/body weight ratio was found after 1240 h of exposure. Microscopic examination of a large number of specimens showed no quantitative or qualitative statistical differences in testes alterations either among exposed animals or between exposed and their corresponding sham-exposed groups. We conclude that 50-Hz electric field exposure, even of long duration at very high field strengths, does not induce harmful effects on tissues with high cellular turnover rates and does not impair the reproductive function of rats. Moreover, after exposure, all variables investigated were well within the normal physiological range. © 1993 Wiley-Liss. Inc.  相似文献   

11.
A dosimeter for assessment of exposures to ELF fields   总被引:3,自引:0,他引:3  
There are currently no biological indicators of electromagnetic field exposure to aid investigation of the biological effects of ELF fields, but this hiatus is partly compensated for by the ease with which the external fields can be measured. The subject of this report is a small electronic instrument that can log electric-, magnetic-, and transient-field intensities of individual subjects for a duration of two weeks, thus allowing exposure to be assessed in considerable detail. A preliminary survey conducted with the instrument has shown clear differences in domestic and occupational exposures of specific groups. Simple analytical models can be fitted to the field-exposure data by adjusting a few parameters such as current, intensity, and distance. Such modeling may be increasingly useful as the data base on exposures expands.  相似文献   

12.
Residential magnetic and electric fields   总被引:1,自引:0,他引:1  
A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors.  相似文献   

13.
14.
Chronic exposure to ELF fields may induce depression   总被引:5,自引:0,他引:5  
Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed "functional pinealectomy." If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders.  相似文献   

15.
Equipment designed for simultaneous exposure of rodents to 60-Hz electric and magnetic fields is described. Three identical systems were constructed, each capable of continuous exposure of 256 rats or 640 mice to a nominal electric field at less than 50 kV/m, and to horizontal and vertical magnetic fields at less than 1 mT. Design features, construction details, and results of various tests of the systems are described. Tests were made: of phase relations between electric and magnetic fields; of uniformity of electric and magnetic fields; of changes across time in electric-field intensity as a result of animals' soiling of cages and various washing routines; of resistance of bedding material during humid and dry conditions; and of acoustic noise due to background, to field-generation equipment, and to air conditioning equipment. The results demonstrated that fields were effectively generated but that significant and troublesome changes in electric-field intensity occurred because of cage-soiling. However, when cages were frequently cleaned, field intensities were consistent from one exposure to another.  相似文献   

16.
Mutations, other than dominant lethals, were accumulated on wild type second chromosomes (+) of Drosophila melanogaster during exposure to 50 Hz sinusoidal alternating magnetic fields of 0.5 or 5 mT (rms) for 40 generations by the Curly/Plum(Cy/Pm) accumulation method. We maintained, for 40 generations under continuous exposure, each (+) chromosome as a heterozygote with (Cy) chromosome. Viability of the (+) chromosome was tested by sib-mating of (Cy/+) male and (Cy/+) female in a culture every 10th generation to obtain the homozygote. Viability indices, defined as twice the ratio of number of (+/+) flies to that of (Cy/+) flies plus 1 in the progeny of the test mating, also were calculated, which equaled 1.00 at the starting point. For the control and 0.5 and 5 mT exposed groups, percent frequencies of recessive lethal lines, defined as a line with (+/+) flies less than 0.3% in the test mating, were, respectively, 1.9, 0.9, and 2.9% (10th), 9.0, 4.9, and 9.5% (20th), 30.3, 22.9, and 30.4% (30th), and 39.9, 32.4, and 43.3% (40th generation). For the control and 0.5 and 5 mT groups, average viability indices, excluding lethals and markedly deleterious, were, respectively, 0.778, 0.796, and 0.752 (20th), 0.704, 0.698, and 0.694 (30th), and 0.669, 0.678, and 0.595 (40th generation). Their decreasing rates were 0.0054, 0.0059, and 0.0078 per generation. No significant difference was detected among the exposure levels in either the recessive lethal mutation frequency or the viability index. Bioelectromagnetics 19:335–340, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

18.
A laboratory facility specifically designed for controlled human exposure to 60-Hz electric (0 to 16 kV/m) and magnetic (0 to 32 A/m, B = 0 to 40 microT) fields has been constructed. The facility presents uniform fields under controlled temperature and humidity. Special control systems allow collection of physiological data during, as well as before and after, exposure to electric fields at strengths to 16 kV/m under verified double-blind control. Exposure to continuous or intermittent fields is possible in the facility. The capability of obtaining physiological data during actual exposure to constant or intermittent, 60-Hz fields, and of doing so without either the subject or the experimenter being aware of actual field conditions, is a critical factor in valid experimentation.  相似文献   

19.
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号