首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cytokine LIF (Leukemia Inhibitory Factor) on the viability, and proliferation of mouse embryonic stem cells (ESC) (R1 cell line) and their distribution by cell cycle stages has been investigated. LIF (5–20 ng/ml) increased growth of colonies and maintained high proliferative and pluripotent properties of R1 cells. LIF was also involved into the inhibition of spontaneous cell differentiation and apoptotic cell death; it also decreased the rations of S/G2 + M cell cycle and doubling-time of cell population.  相似文献   

2.
3.
Spermatogonial stem cells (SSCs) are the only type of cells that transmit genes to the subsequent generations. The proliferation, cultivation and identification of SSCs in vitro are critical to understanding of male infertility, genetic resources and conservation of endangered species. To investigate the effects of glial cell-derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) on the proliferation of mouse SSCs in vitro, supplement of GDNF and/or LIF were designed to culture SSCs. The testes of 6–8 d mouse were harvested and digested by two-step enzyme digestion method. The SSCs and Sertoli cells were separated by differential plating. Then the SSCs were identified by alkaline phosphatase staining, RT-PCR and indirect immunofluorescence cell analysis. The cellular proliferation capacity was measured by methyl thiazolyl tetrazolium assay. The results showed that addition of 20 and 40 ng/ml of GDNF could strongly promote growth of mouse SSCs (p < 0.05). There was no significant difference between LIF treatment groups and the control group in promoting proliferation of the mouse SSCs (p > 0.05). However, the combination of 20 ng/ml GDNF and 1,000 U/ml LIF could significantly enhance the invitro proliferation of mouse SSCs (p < 0.05), and the OD490 value was 0.696 at day 5 of culture when the density of SSCs was 5–10 × 104 cells/ml.  相似文献   

4.
5.
Despite the fact that long noncoding RNAs (lncRNAs) play roles in almost all biological processes, little is known about their biological function in the endometrium during the formation of endometrial receptivity. In this study, a comprehensive analysis of lncRNAs in goat endometrial tissues on Day 5 (prereceptive endometrium, PE) and Day 15 (receptive endometrium, RE) of pregnancy was performed by using RNA-Seq. As a result, 668 differentially expressed lncRNAs (DELs) were found between the PE and RE. Further study showed that lncRNA882, regulated by estrogen (E2) and progestin (P4), could act as competing endogenous RNAs (ceRNAs) for miR-15b, which inhibited the expression of transforming growth factor-b-activated kinase 1 binding protein 3 (TAB3) and then indirectly regulated the level of leukemia inhibitory factor (LIF). This was helpful for the formation of endometrial receptivity in dairy goats. In conclusion, we elucidated the endometrium lncRNA profiles of PE and RE in dairy goats; lncRNA882 acted as a ceRNA for miR-15b and then indirectly regulated the level of LIF in goat endometrial epithelium cells. Thus, this study helped us to better understand the molecular regulation of endometrial receptivity in dairy goats.  相似文献   

6.
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment.  相似文献   

7.
8.
The objective of this study was to determine the ability of multiple-factor supplementation to augment derivation of mouse embryonic stem (mES) cells. Three factors, leukemia inhibitory factor (LIF), Parke-Davis 98059 (PD98059), and 6-bromoindirubin-3′-oxime (BIO), were added as supplements (individually or in a combination of all three) at two consecutive stages of culture; that is, from the start of blastocyst culture to the outgrowth stage, and from putting disaggregated outgrowth into culture medium to generation of primary mES colonies, respectively. The main outcome measure was the percentage of derivable mES cell lines, based on the number of blastocysts initially cultured. Three experiments demonstrated the following: (1) For the addition of individual single factor, only LIF yielded mES cell lines (6.2%), whereas a combination of all three factors resulted in the greatest number of mES cell lines (31.3%). (2) The advantages of a combination of multiple factors (LIF + PD98059 + BIO) were manifested only when they were used during the first stage of the culture and not during the second stage (31.6% vs. 6.2%, respectively). (3) The quality of the inner cell mass (ICM) outgrowth obtained from first-stage culture was studied. After alkaline phosphatase and Oct-4 staining, which documented pluripotency of the embryonic stem cells, outgrowths cultured in multiple factors (LIF + PD98059 + BIO) stained much stronger and in higher proportions than did those obtained after supplementation only with LIF (80% vs. 30%, respectively).  相似文献   

9.
We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak−/− MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak−/− MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak−/− MEF cells (Ahnak−/−-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak−/−-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak−/− MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.  相似文献   

10.
Cholinergic neuronal differentiation factor/leukemia inhibitory factor (CDF/LIF) is a multi-functional cytokine that affects neurons as well as many other cell types. Toward elucidating its neural functions in vivo, we previously investigated the distribution of CDF/LIF binding sites with iodinated native CDF/LIF in embryonic to postnatal day 0 (P0) rats. In the present study, we have extended our examination to postnatal ages and find that specific CDF/LIF binding sites are present at defined developmental stages in additional brain regions not previously exhibiting binding by P0. High levels of binding are detected in all P7 sensory and autonomic ganglia examined, but only in restricted postnatal central nervous system structures. Cranial motor and mesencephalic trigeminal neurons maintain high levels throughout, while binding to spinal motor neurons, which decreases to low levels at P0, reappears by P14 and increases with age. Most other structures, which show detectable binding by P0, exhibit higher levels at postnatal ages, including the red, deep, ventral cochlear, trapezoid, superior olivary, vestibular, ventral tegmental, and ventral posterior thalamic nuclei as well as the glomerular layer of the olfactory bulb. High levels are also detected in several structures for the first time after P0, including the cerebellar cortex (molecular and Purkinje cell layers), lateral reticular nucleus of the medulla and reticular formation, as well as the reticulotegmental, medial geniculate, solitary (rostral, dorsomedial, and commissural regions), medial septal, lateral mammillary, and lateral habenular nuclei. These results not only identify regions of potential CDF/LIF-responsive neurons and glia throughout development but suggest new CDF/LIF roles in the nervous system. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 163–192, 1997.  相似文献   

11.
iPS (induced pluripotent stem) cells can be induced from somatic cells in mice by genetic manipulation. Most previously established mouse iPS cell lines have been derived using feeder layers supplemented with exogenous LIF (leukaemia inhibitory factor). Although a feeder‐free induction system has been developed in recent studies, LIF is still required for reprogramming, but its role in the generation of mouse iPS cells has remained elusive. In this study, we investigated its contribution to the induction of pluripotency. Our results showed that LIF activates AP (alkaline phosphatase) through a c‐Myc‐dependent mechanism. Moreover, it acts as a protective factor during the transition from AP‐positive colonies to Oct3/4‐positive cells. These findings illustrate a mechanism by which LIF may integrate signalling into reprogramming.  相似文献   

12.
Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice. Whether LIF plays a role in termination of embryonic diapause and initiation of implantation in carnivores, especially in species with obligate delayed implantation such as the mink, is not known. The objectives of this study were to clone the LIF coding sequence in the mink and determine its mRNA abundance in the uterus through embryonic diapause, implantation, and early postimplantation. We show that the mink LIF cDNA contains 609 nt encoding a deduced protein of 203 amino acids. The homologies are 80.6, 90, 88.2, 87.6, and 86.8% in coding sequence and 79.2, 90.1, 91, 90.1 and 85.4% in amino acid sequence with mouse, human, pig, cow, and sheep respectively. Glycosylation sites and disulfide bonds present in other species are generally conserved in the mink LIF sequence. Quantitation by polymerase chain reaction amplification indicates that LIF mRNA is expressed in mink uterus just prior to implantation and during the first two days after implantation, but not during diapause or later after implantation pregnancy. The abundance of LIF mRNA was significantly higher in the uterus at the embryo expansion stage (P < 0.05) than at days 1–2 of postimplantation. By immunohistochemical localization it was shown that LIF is expressed in the uterine epithelial glands at time of embryonic expansion and in early postimplantation. The coincidence of LIF expression with implantation in this species suggests that LIF is involved in the implantation process, and may be a maternal signal which terminates obligate embryonic diapause. Mol. Reprod. Dev. 51:13–21, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
RNA interference is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. In the six years since the initial report, RNA interference has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. An equally popular topic over the past six years has been the proposal to utilize embryonic stem cells or adult stem cells as cell-based therapies for human diseases. The aim of this review is to provide a general overview of how RNA interference suppresses gene expression and to examine some published RNA interference approaches that have resulted in changes in stem cell function and suggest the possible clinical relevance of this work.  相似文献   

14.
Summary Isolation and maintenance of porcine embryonic stem (pES) cells have been hindered by the inability to inhibit differentiation of the porcine inner cell mass (pICM) in vitro. Culture conditions currently in use have been developed from mouse ES cell culture and are not effective for maintaining the pICM. Optimizing culture conditions for the pICM is essential. We have developed a grading system to detect changes in the differentiation status of in vitro cultured pICM. Porcine ICMs (Day 7) were isolated by immunosurgery and cultured for 4 d in either Dulbecco’s modified Eagle’s medium (DMEM)-based medium (D medium) or DMEM/Ham’s F-10 (1:1)-based medium (D/H medium) with or without human Leukemia Inhibitory Factor (hLIF, 1000 iu/ml). Colonies were photographed daily for morphological analysis. pICMs were categorized into one of two types based on their morphological profile: type A, nonepithelial or type B, epithelial-like. Eight investigators evaluated pICM differentiation using standardized differentiation profiles. Each pICM series was graded on a scale of 1 (fully undifferentiated) to 5 (fully differentiated) for each time point. Differentiation was verified by alkaline phosphatase activity, cytokeratin staining, and scanning electron microscopy. Neither hLIF nor culture medium delayed differentiation of pICMs (P=0.08 and P=0.25, respectively). The grading system employed was an effective tool for detecting treatment effects on differentiation of the developing pICM. These results demonstrate that hLIF cannot significantly inhibit differentiation of the pICM, and is unlikely to assist in porcine ES cell isolation. Future experiments utilizing homologous cytokines may prove more beneficial.  相似文献   

15.
Embryonic stem (ES) cells represent an ideal source for cell engraftment in the damaged central nervous system (CNS). Understanding key signals that control ES cell differentiation may improve cell type-specific differentiation that is suitable for transplantation therapy. We tested the hypothesis that extracellular signal-regulated kinase (ERK) 1/2 phosphorylation is an early signaling event required for the neuronal differentiation of ES cells. Cultured mouse ES cells were treated with an all-trans-retinoic-acid (RA) protocol to generate neurally induced progenitor cells. Western blot analysis showed a dramatic increase in ERK 1/2 phosphorylation (p-ERK 1/2) 1-5 days after RA induction, which was attenuated in the presence of the p-ERK 1/2-specific inhibitor UO126. Phospho-ERK 1/2 inhibition significantly reduced the number of NeuN-positive cells and the expression of associated cytoskeletal proteins. In differentiating ES cells, there was increased nuclear translocation of STAT3 and decreased protein expression levels of GDNF, BDNF and NGF. STAT3 translocation was attenuated by UO126. Finally, caspase-3 activation was observed in the presence of UO126, suggesting that the ERK pathway also contributes to the survival of differentiating ES cells. These data indicate that ERK 1/2 phosphorylation is a key event required for early neuronal differentiation and survival of ES cells.  相似文献   

16.
目的:研究Borealin及CPC(Chromosomal Passenger Complex)相关基因表达变化与胚胎干细胞瘤变过程的关系,从而了解Borealin在于细胞中的特殊功能。方法:培养不同状态的胚胎干细胞及畸胎癌细胞,并提取总RNA,进行芯片和荧光定量PCR分析。结果:ES(embryonic stem cell)细胞分化过程中Borealin基因表达下调;在Es细胞染色体发生变异的过程中部分染色体复合物相关基因的表达发生了明显的变化,EC(embryonic cancer cell)细胞中Borealin、Survivin,MCAK、AuroraB、op18等基因的表达明显高于正常胚胎干细胞。结论:Borealin及CPC异常的表达可能是胚胎干细胞瘤变的一个重要标记。  相似文献   

17.
18.
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号