首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A E Cowan  J R McIntosh 《Cell》1985,41(3):923-932
We have analyzed the differentiation potential of cells in early embryos of Caenorhabditis elegans by assessing the production of markers for intestinal, muscle, and hypodermal cell differentiation in cleavage-arrested blastomeres. Our results show that differentiation potential does not always segregate during cleavage in a linear fashion, i.e., a blastomere can express a differentiation potential that is absent in its parent blastomere and vice versa. Furthermore, the expression of a particular differentiation program by certain cleavage-arrested blastomeres is an exclusive event in that each cell will express only one program of differentiation, even though it may have the potential to express several.  相似文献   

2.
The question whether two or more different genetic programs are expressed in the common cytoplasm of single blastomeres or the expression of one genetic program somehow excludes expression of the other, was analyzed by assessing the occurrence of a muscle-specific and two epidermis-specific antigens in cleavage-arrested blastomeres in early embryos of the ascidian Halocynthia roretzi . Blastomeres which had been arrested in 1- to 4-cell stages expressed only the epidermis markers. Arrested 8-cell to 32-cell embryos produced both epidermis and muscle markers, but each cell expressed only one program of differentiation, even though some possessed the potential to express both. The differentiation expressions followed their cell lineages. These results indicate that at least in this experimental system differentiation markers of the two different cell-types are expressed exclusively.
A distinct order was noticed in expression of the two epidermis markers in a single blastomeres; a marker is always superiorly expressed, whereas the other appears only when the superior marker is expressed.  相似文献   

3.
We have observed ultrastructural features of muscle differentiation in the muscle lineage cells of cleavage-arrested whole embryos and partial embryos of ascidians. Whole embryos of Ciona intestinalis and Ascidia ceratodes were cleavage-arrested with cytochalasin B at the 8-cell stage and reared to an age equivalent to several hours after hatching; these embryos formed extensive myofilaments which were often further organized into myofibrils of different sizes and densities in the peripheral cytoplasm of the two muscle lineage blastomeres (B4.1 pair). Developing myofibrils in cleavage-arrested embryos resembled the muscle elements observed in normal hatched larvae, but were less uniformly organized. A similar development of myofilaments and myofibrils occurred in the muscle lineage cells of multicellular partial embryos reared to "hatching" age. These partial embryos resulted from the isolated muscle lineage pair (B4.1) of blastomeres of the 8-cell stage (Ciona and Ascidia), and from a muscle lineage blastomere pair (B5.2) isolated at the 16-cell stage (Ascidia). Muscle lineage cells in the partial embryos were readily identified by the dense aggregates of mitochondria in their cytoplasm. Taken together, these results from the two kinds of partial embryo effectively eliminate inductive interactions with embryonic tissues other than mesodermal as a necessary factor in the onset of self-differentiation in muscle lineage cells. The relative complexity of muscle phenotype expressed in cleavage-arrested and partial embryos attests to an unusually strong developmental autonomy in the ascidian muscle lineages. This autonomy lends further support to the theory that a localized and segregated egg cytoplasmic determinant is responsible for larval muscle development in ascidian embryos.  相似文献   

4.
5.
Ascidian early embryonic cells undergo cell differentiation without cell cleavage, thus enabling mixture of cell fate determinants in single cells, which will not be possible in mammalian systems. Either cell in a two-cell embryo (2C cell) has multiple fates and develops into any cell types in a tadpole. To find the condition for controlled induction of a specific cell type, cleavage-arrested cell triplets were prepared in various combinations. They were 2C cells in contact with a pair of anterior neuroectoderm cells from eight-cell embryos (2C-aa triplet), with a pair of presumptive notochordal neural cells (2C-AA triplet), with a pair of presumptive posterior epidermal cells (2C-bb triplet), and with a pair of presumptive muscle cells (2C-BB triplet). The fate of the 2C cell was electrophysiologically identified. When two-cell embryos had been fertilized 3 h later than eight-cell embryos and triplets were formed, the 2C cells became either anterior-neuronal, posterior-neuronal or muscle cells, depending on the cell type of the contacting cell pair. When two-cell embryos had been fertilized earlier than eight-cell embryos, most 2C cells became epidermal. When two- and eight-cell embryos had been simultaneously fertilized, the 2C cells became any one of three cell types described above or the epidermal cell type. Differentiation of the ascidian 2C cell into major cell types was reproducibly induced by selecting the type of contacting cell pair and the developmental time difference between the contacting cell pair and 2C cell. We discuss similarities between cleavage-arrested 2C cells and vertebrate embryonic stem cells and propose the ascidian 2C cell as a simple model for toti-potent stem cells.  相似文献   

6.
Anural ascidians do not develop into a conventional tailed larva with differentiated muscle cells, however, embryos of some anural ascidian species retain the ability to express acetylcholinesterase (AChE) in a vestigial muscle cell lineage. This study examines the number of AChE-positive cells that develop in the anural ascidian Molgula occulta relative to that in the closely related urodele (tailed) species, Molgula oculata. Histochemical assays showed that M. oculata embryos develop 36 to 38 AChE-positive cells, consistent with the number of tail muscle cells expressed in other urodele ascidians. In contrast, M. occulta embryos develop a mean of only 20 AChE-positive cells in their vestigial muscle lineage. Cleavage-arrested embryos of the anural species express AChE only in B-line blastomeres, showing that the vestigial muscle lineage cells are derived from the primary muscle lineage. Less than the expected number of AChE-positive B-line cells develop in cleavage-arrested anural embryos, however, implying that the allocation of primary muscle lineage cells is decreased. Eggs of the anural species can be fertilized with sperm of the urodele species resulting in the development of some larvae that contain a short tail and/or a brain melanocyte, specific features of urodele larvae. The typical urodele number of AChE-positive cells is restored in some of these hybrid embryos. Both primary and secondary muscle lineages are restored because cleavage-arrested hybrid embryos develop more AChE-positive cells in the B-line blastomeres and supernumerary AChE-positive cells in the A-line blastomeres. Hybrid embryos that develop the urodele complement of AChE-positive cells also form a tail and/or a brain melanocyte showing that restoration of muscle lineage cells is coupled to the development of other urodele features. AChE expression occurred in anural embryos with disorganized or dissociated blastomeres, indicating that AChE expression is determined autonomously. It is concluded that an evolutionary change in the allocation of larval muscle lineage cells occurs during development of the anural ascidian M. occulta which can be restored by interspecific hybridization with the urodele ascidian M. oculata.  相似文献   

7.
The 8-cell stage embryos of the ascidian Halocynthia roretzi which had been prevented from undergoing further divisions by continuous treatment with cytochalasin B could develop histospecific muscle acetylcholinesterase in two blastomeres (B4.1 and B4.1 cells). If the cytoplasm of a B4.1 or B4.1 cell was transplanted by microinjection into either an A4.1 or A4.1 cell of recipient embryos and the transplanted embryos were permanently cleavage-arrested with cytochalasin B, a few eventually developed AChE in three blastomeres instead of in just the two blastomeres found in cleavage-arrested control embryos. Judging from the relative positions of the blastomeres, the third AChE-producing cells appeared to be the A4.1 or A4.1 cells injected with the cytoplasm of B4.1 or B4.1. Although the success rate was considerably low, this result might indicate the presence in the cytoplasm of a determinant for the muscle-specific enzyme development.  相似文献   

8.
Summary Ultrastructural features of histospecific differentiation were found in early cleavage stage ascidian embryos treated with cytochalasin B and held thereby in cleavagearrest until hatching time. Markers characteristic of tissue differentiation during normal embryonic and larval stages ofCiona intestinalis were expressed in muscle and two brain cell lineages of cleavage-arrested whole embryos and in epidermal and notochordal cell lineages of cleavage-arrested partial embryos. These features were muscle myofilaments and myofibrils, melanosomes of the brain pigment cells, cilium-derived structures present in a proprioceptive brain cell, extracellular test material of epidermal cell origin, and the sheath filaments, membrane leaflets, and vacuolar colloid associated with notochord cells. All of these ultrastructural markers of differentiation were blocked in their development by treatment of gastrula stage embryos with actinomycin D, an inhibitor of RNA synthesis, and presumably result from the expression of new gene activity. At the time of cleavage-arrest the five cell lineages studies still contained two or more unsegregated lineage pathways. Subsequent developmental autonomy within the lineages is consistent with the hypothesis of segregation during early development of functionally independent gene regulatory factors.  相似文献   

9.
The role of cell division in the expression of muscle actin and its relationship to acetylcholinesterase (AChE) development was examined in cleavage-arrested embryos of the ascidian Styela. Muscle actin expression was detected by two-dimensional gel electrophoresis of radioactively labelled proteins and by in situ hybridization with a cDNA probe, whereas AChE activity was assayed by enzyme histochemistry. In the majority of cases, muscle actin expression was first detected in embryos arrested after the 16-cell stage. Some embryos showed muscle actin expression after arrest at the 8-cell stage, however, muscle actin mRNA did not accumulate in embryos arrested at earlier cleavages. The cells that expressed muscle actin in 8- to 64-cell cleavage-arrested embryos belonged to the primary muscle lineage; secondary muscle cell precursors did not express muscle actin. Zygotic muscle actin mRNA appeared to accumulate with myoplasmic pigment granules in the perinuclear region of cleavage-arrested embryos, suggesting that the myoplasm may have a role in the organization of muscle cells. In contrast to muscle actin, AChE was detected in a small proportion of embryos treated with cytochalasin as early as the 1- or 2-cell stage, and most embryos treated with cytochalasin at later cleavages expressed this enzyme in some of their cells. Most primary muscle lineage cells expressed both muscle actin mRNA and AChE, however, some cells expressed only muscle actin mRNA or AChE. The results suggest that at least three cleavages are required for muscle actin expression and that muscle actin and AChE expression can be uncoupled in cleavage-arrested embryos.  相似文献   

10.
According to the evolutionary tree proposed by Garstang, the tunicate larva has a central role in directing the ancestral sessile animal derived from primitive echinoderms into the stem for vertebrates by evolution through neoteny. The close similarity of the tunicate larval body plan to those of vertebrates and the extraordinary simplicity indicated by an extremely small cell population make the ascidian embryo and larva an excellent model system for analysis of vertebrate embryonic development. Furthermore, isolated anterior animal blastomeres from the Halocynthia eight-cell cleavage-arrested embryo, which are known to include presumptive brain vesicle region, autonomously develop long-lasting Ca-dependent action potentials which are characteristic of epidermal differentiation. However, when blastometeres are cultured in contact with the anterior vegetal blastomere, which are known to include presumptive notochordal region, and raised in contacted two cell systems, the same anterior animal blastomeres now develop neuronal Na+ spikes characterized by expression of Na+ channels and triethylammonium sensitive delayed rectifier K+ channels. This unique two-cell system enables us to examine roles of cell contact in various aspects of inductive differentiation at the cellular level. In this review, we focus on this simple cellular preparation and in particular, attempt to show how to make the preparation. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 3–22, 1998  相似文献   

11.
Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile.  相似文献   

12.
C. elegans is proving useful for the study of cell determination in early embryos. Breeding experiments with embryonic lethal mutants show that abnormal embryogenesis often results from defective gene function in the maternal parent, suggesting that much of the information for normal embryonic development is laid down during oogenesis. Analysis of a gut-specific differentiation marker in cleavage-arrested embryos has provided evidence that the potential for this differentiation behaves as a cell-autonomous internally segregating developmental determinant, which is present from the 2-cell stage onward and is partitioned into the gut precursor cell during early cleavage divisions. Visible prelocalized cytoplasmic granules that segregate with a particular cell lineage have heen observed in the embryonic germline precursor cells by fluorescent antibody staining. Whether these granules play a role in germline determina... [remainder of abstract missing in original]  相似文献   

13.
Ascidian larvae develop after an invariant pattern of embryonic cleavage. Fewer than 400 cells constitute the larval central nervous system (CNS), which forms without either extensive migration or cell death. We catalogue the mitotic history of these cells in Ciona intestinalis, using confocal microscopy of whole-mount embryos at stages from neurulation until hatching. The positions of cells contributing to the CNS were reconstructed from confocal image stacks of embryonic nuclei, and maps of successive stages were used to chart the mitotic descent, thereby creating a cell lineage for each cell. The entire CNS is formed from 10th- to 14th-generation cells. Although minor differences exist in cell position, lineage is invariant in cells derived from A-line blastomeres, which form the caudal nerve cord and visceral ganglion. We document the lineage of five pairs of presumed motor neurons within the visceral ganglion: one pair arises from A/A 10.57, and four from progeny of A/A 9.30. The remaining cells of the visceral ganglion are in their 13th and 14th generations at hatching, with most mitotic activity ceasing around 85% of embryonic development. Of the approximately 330 larval cells previously reported in the CNS of Ciona, we document the lineage of 226 that derive predominantly from A-line blastomeres.  相似文献   

14.
Multiple states of differentiation developed within the same undivided egg cytoplasm of ascidian zygotes cleavage-arrested with cytochalasin B. Complex ultrastructural traits of up to four quite diverse cell lineage components were observed in regions of the common cytoplasm in such multinucleate homokaryons of Ciona intestinalis: epidermal, muscle, notochordal, and neural. Almost all specimens among those selected as showing differentiation contained two such features, half of them had at least three, and a few expressed all four. The histospecific morphological characteristics noted were the extracellular test material of epidermal cell origin, muscle myofilaments and myofibrils, sheath components (leaflets and filaments) associated with notochordal cells, and the particular localized combinations of microtubules, filamentous structures, and cilia indicative of neural tissues. Cleavage-arrested one-celled embryos of Ascidia ceratodes served to demonstrate that those which were found cytochemically to contain muscle acetylcholinesterase always had myofibrils and myofilaments. Other arrested zygotes of Ascidia (unstained specimens) also had quite fully formed test material as well as myofilaments and myofibrils. The occurrence within the same cell of so many specific markers of diverse pathways of development is consistent with a theory about a primary level of regulation based on autonomous gene activation factors already present in the fertilized egg. If further investigation substantiates a real cytoplasmic continuity within these cleavage-arrested embryos, other theories that invoke cell interactions, temporal sequences of metabolically distinct microenvironments, and gradients of substances as causes of determinative change seem inadequate to account for the coexisting expressions of differentiation described here.  相似文献   

15.
During blastulation of mouse embryos, differentiation of the blastomeres occurs at the 16- to 32-cell stage of the development. The differentiation processes seem to be controlled by extrinsic as well as intrinsic parameters, including distribution of signals neccessary for the induction of cell lineage specific proteins into blastomeres, and the induction of the synthesis of cell lineage specific proteins through cell interactions. These two processes are distinguished by treatment with various chemicals and by mutations. For the distribution of the signal molecules among blastomeres, cell polarization occurring at the 8-cell stage seems to be important, while the activation of the cell lineage specific genes, cell-interactions mediated by cell surface glycoproteins are suggested to play an important role.  相似文献   

16.
Blastomeres of sea urchin embryo change their shape from spherical to columnar during the early cleavage stage. It is suspected that this cell shape change might be caused by the increase in the adhesiveness between blastomeres. By cell electrophoresis, it was found that the amount of negative cell surface charges decreased during the early cleavage stages, especially from the 32-cell stage. It was also found that blastomeres formed lobopodium-like protrusions if the embryos were dissociated in the presence of Ca2+. Interestingly, a decrease in negative cell surface charges and pseudopodia formation first occurred in the descendants of micromeres and then in mesomeres, and last in macromeres. By examining the morphology of cell aggregates derived from the isolated blastomeres of the 8-cell stage embryo, it was found that blastomeres derived from the animal hemisphere (mesomere lineage) increased their adhesiveness one cell cycle earlier than those of the vegetal hemisphere (macromere lineage). The timing of the initiation of close cell contact in the descendants of micro-, meso- and macromeres was estimated to be 16-, 32- and 60-cell stage, respectively. Conversely, the nucleus-to-cell-volume ratios, which are calculated from the diameters of the nucleus and cell, were about 0.1 when blastomeres became adhesive, irrespective of the lineage.  相似文献   

17.
The present investigation was conducted to isolate cDNA clones that correspond to epidermis-specific genes of the ascidian embryo. When cleavage of fertilized eggs of Halocynthia roretzi is blocked by treatment with cytochalasin B and the arrested eggs are reared as one-celled embryos for about 30 hr, they develop features of differentiation of the epidermis only. Translation in vitro of poly(A)+ RNA from cleavage-arrested embryos and analysis of the products by two-dimensional gel electrophoresis revealed several predominant polypeptides that were not detected in a similar analysis of fertilized eggs, suggesting the appearance of epidermis-specific mRNAs in cleavage-arrested embryos. A cDNA library was constructed from arrested one-celled embryos. Differential screening of the library with a total cDNA probe from cleavage-arrested embryos and with a similar probe from fertilized eggs yielded eight different cDNA clones specific for the cleavage-arrested embryos. Northern blot analysis revealed that the mRNAs that corresponded to these cDNAs were present in normal tailbud embryos. In addition, in situ hybridization of whole-mount specimens showed that the mRNAs were restricted to the epidermal cells of tailbud embryos.  相似文献   

18.
Summary In the early embryo ofCaenorhabditis elegans five somatic cell lineages and a germ cell lineage are established by a series of unequal cleavages in the germline. We suppressed first cleavage by means of cold, mechanical pressure or centrifugation. Thereafter, with the second attempt of the zygote to divide, four blastomeres were generated simultaneously in a tetrapolar cleavage. Cell division pattern, segretation of germline-specific granules, and terminal differentiation of such manipulated embryos were analysed. Instead of six, only from one to five visible cell lineages were established before the germline prematurely aborted from its typical pattern of unequal cleavage. The absence of germline-specific cleavage appears to accompany the abnormal segregation of germline-specific granules. While muscle differentiation was detected even in embryos expressing only one cell lineage, in general, gut differentiation became visible only if a separate gut lineage had been generated. We hypothesize that the potential for differential cleavage is lost in manipulated embryos because a cytoplasmic control factor is diminished as a result of the retarded soma/germline separation. According to this hypothesis, after manipulation, a concentration-dependent decision mechanism leads to: a reduced number of unequal germline cleavages or even none at all, the establishment of fewer distinct cell lineages, and limited cellular differentiation.  相似文献   

19.
Mouse embryos at the 2-cell stage were cultured in the presence of cytochalasin B (CB), cytochalasin D (CD), colchicine (COL) or colcemid (COM) for up to 72 h. Cleavage was arrested in the 2-cell and 8-cell embryos cultured in CB or CD but the blastomeres continued to differentiate, since chromosome replication occurred in the blastomeres at approximately the same time as control embryos underwent cleavage; an increase in the incorporation of [3H]uridine into RNA was also detected. Furthermore, the cleavage-arrested embryos acquired the necessary information to undergo morphogenesis; these embryos when explanted to fresh medium after 48 h culture in CB or CD underwent compaction within 15–60 min and started to cavitate to produce trophoblastic vesicles within 5–6 h at the same time as when the control embryos were undergoing compaction and beginning to form blastocoelic cavities. In contrast, the embryos arrested in the presence of COM or COL showed none of these differentiative, biochemical or morphogenetic changes. Hence, differentiation of blastomeres and morphogenesis is apparently coupled with nuclear divisions and the information does not reside within the blastomeres at the 2-cell or 8-cell stage. The trophoblastic vesicles produced after cleavage arrest subsequently gave rise to only trophoblast giant cells and no embryonic derivatives were detected.  相似文献   

20.
Several chemicals targeting the mitogen-activated protein (MAP) kinase signaling pathway, which play an important role in regulating cell growth and differentiation, have shown enhancing effects on the development of the inner cell mass (ICM) and the derivation of ES cells. However, investigation of such chemicals on early embryonic development and the establishment of ES cell lines has not been elucidated. This study was aimed to determine if ACTH, MAP2K1 inhibitor [MAP2K1 (I)], and MAPK14 inhibitor [MAPK14 (I)] could enhance the development of the ICM in preimplantation mouse embryos and blastocyst outgrowths, and the establishment of ES cell lines from blastomeres of early embryos. We have demonstrated that both MAP2K1 (I) and MAPK14 (I) delay early embryo development and inhibit the development of embryos from early blastomeres. On the other hand, ACTH had a positive effect on embryos derived from early blastomeres. As a result, 17 ES cell lines were established. Among these ES cell lines, nine and five ES cell lines were established from single blastomeres of two-cell embryos with and without the supplement of ACTH, respectively. In addition to two-cell isolated blastomeres, three ES cell lines were established from blastomeres of four-cell embryos only with the supplement of ACTH. Our results suggest that ACTH can enhance the derivation of ES cells from single blastomere-derived embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号