首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newly hatched precocial chicks of arctic shorebirds are able to walk and regulate their body temperatures to a limited extent. Yet, they must also grow rapidly to achieve independence before the end of the short arctic growing season. A rapid growth rate may conflict with development of mature function, and because of the allometric scaling of thermal relationships, this trade-off might be resolved differently in large and small species. We assessed growth (mass) and functional maturity (catabolic enzyme activity) in leg and pectoral muscles of chicks aged 1-16 d and adults of two scolopacid shorebirds, the smaller dunlin (Calidris alpina: neonate mass 8 g, adult mass 50 g) and larger whimbrel (Numenius phaeopus; neonate mass 34 g, adult mass 380 g). Enzyme activity indicates maximum catabolic capacity, which is one aspect of the development of functional maturity of muscle. The growth rate-maturity hypothesis predicts that the development of catabolic capacity should be delayed in faster-growing muscle masses. Leg muscles of both species were a larger proportion of adult size at hatching and grew faster than pectoral muscles. Pectoral muscles grew more rapidly in the dunlin than in the whimbrel, whereas leg muscles grew more rapidly in the whimbrel. In both species and in both leg and pectoral muscles, enzyme activities generally increased with age, suggesting increasing functional maturity. Levels of citrate synthase activity were similar to those reported for other species, but l-3-hydroxyacyl-CoA-dehydrogenase and pyruvate kinase (PK) activities were comparatively high. Catabolic capacities of leg muscles were initially high compared to those of pectoral muscles, but with the exception of glycolytic (PK) capacities, these subsequently increased only modestly or even decreased as chicks grew. The earlier functional maturity of the more rapidly growing leg muscles, as well as the generally higher functional maturity in muscles of the more rapidly growing dunlin chicks, contradicts the growth rate-maturity function trade-off and suggests that birds have considerable latitude to modify this relationship. Whimbrel chicks, apparently, can rely on allometric scaling of power requirements for locomotion and the thermal inertia of their larger mass to reduce demands on their muscles, whereas dunlin chicks require muscles with higher metabolic capacity from an earlier age. Thus, larger and smaller species may adopt different strategies of growth and tissue maturation.  相似文献   

2.
We measured the mass and several potential indices of functional capacity of the leg and pectoral muscles through 21 d of age in chicks of three species of galliform birds and the domesticated turkey. The study was conducted to test the hypothesis that the growth rate of a tissue is inversely related to its capacity for mature function across species. We measured the proportion of protein and the activities of the catabolic enzymes citrate synthase (CS), pyruvate kinase (PK), and beta -hydroxy-acyl-CoA-dehydrogenase (HOAD) and estimated exponential growth rate (EGR) from growth increments. EGR was negatively related to proportion of protein, PK, and HOAD and positively related to CS activity. In a multiple regression, EGR was uniquely related only to proportion of protein; it was higher in pectoral muscles and increased in this order: wild turkey相似文献   

3.
Some studies show that birds with high postnatal growth rates (e.g. altricial species) are characterized by a rapid early development of "supply" organs, such as digestive organs. Birds with low postnatal growth rates (e.g. precocial species) exhibit a slower early development of these organs and a more rapid early development of other "demand" organs, such as brain, muscles, skeleton and feathers. To test whether these differences can be traced back to early embryonic development and whether they can be associated with changes in developmental timing, i.e. heterochrony, we compared embryos of the precocial quail and the altricial fieldfare, two bird species with low and high postnatal growth rates, respectively. We used classical staging techniques that use developmental landmarks to categorize embryonic maturity as well as morphological measurements. These techniques were combined with immune detection of muscle specific proteins in the somites. Our data showed that the anlagen of the head, brain and eyes develop earlier in the quail than in the fieldfare in contrast to the gut which develops earlier in the fieldfare than in the quail. Our data also showed that the quail and the fieldfare displayed different rates of myotome formation in the somites which contribute to muscle formation in the limbs and thorax. We believe these observations are connected with important differences in neonatal characteristics, such as the size of the brain, eyes, organs for locomotion and digestion. This leads us to the conclusion that selection for late ontogenetic characteristics can alter early embryonic development and that growth rate is of fundamental importance for the patterning of avian embryonic development. It also appears that this comparative system offers excellent opportunities to test hypotheses about heterochrony.  相似文献   

4.
The high correlation between growth rate and adult body weight has been much more thoroughly documented for altricial birds than for precocial species. This paper gathers data from the literature for precocial Galliformes and also reports new growth data on six galliform species for analysis. The onset of homeothermic ability is investigated in Galliformes over a range of body size. The results confirm that (1) large species' chicks grow at a slower rate than those of smaller species, and (2) larger species' chicks can thermoregulate earlier than smaller species' chicks under cold stress situations. Published embryonic body weights are also analysed to determine when growth rate differences appear in the development of precocial species. No interspecific differences appeared in the relative growth rates of embryos, and therefore species body size does not appear to influence growth rate before hatching.  相似文献   

5.
We have raised monoclonal antibodies (Mabs) to myosin heavy chain isoforms (MHCs) that have specific patterns of temporal expression during the development of quail pectoral muscle and that are expressed in very restricted, tissue-specific patterns in adult birds. We find that an early embryonic, a perinatal, and an adult-specific, fast myosin heavy chain are co-expressed at different levels in the pectoral muscle of 8-12 day quail embryos. The early embryonic MHC disappears from the pectoral muscle at approximately 14 days in ovo, whereas the perinatal MHC persists until 26 days post-hatching. The adult-specific MHC accumulates preferentially and eventually completely replaces the other isoforms. These Mabs cross-react with the homologous isoforms of the chick and detect a similar pattern of MHC expression in the pectoral muscle of developing chicks. Although the early embryonic and perinatal MHC isoforms recognized by our Mabs are expressed in the pectoral muscle only during distinct developmental stages, our Mabs also recognize MHC isoforms present in the heart and extraocular muscle of adult quail. Immunofingerprinting using Staphylococcus aureus protease V8 suggests that the early embryonic and perinatal MHC isoforms that we see are strongly homologous with the adult ventricular and extraocular muscle isoforms, respectively. These observations suggest that at least three distinct MHC isoforms, which are normally expressed in adult muscles, are co-expressed during the early development of the pectoral muscle in birds. In this respect, the pattern of expression of the MHCs recognized by our Mabs in developing, fast muscle is very similar to the patterns described for other muscle contractile proteins.  相似文献   

6.
We investigated the possibilities that the proportion of docosahexaenoic acid (DHA) in phospholipids of brain and skeletal muscle at hatch, and the ontogenetic timing of the DHA accretion spurt in these tissues, might serve as indices of neonatal functional maturity that discriminate between precocial and altricial avian developmental modes. Comparison of the fatty acid profiles of the initial and residual yolks of two free-living altricial species, the swallow (Hirundo rustica) and the sparrow (Passer domesticus), reveals that, in contrast to precocial birds, there is no preferential uptake of DHA from the yolk during embryonic development. At hatch, the proportions of DHA in brain phospholipid (wt.% of fatty acids) of the swallow and sparrow, at 8.1% and 5.0%, respectively, are far lower than the values (16.9-19.6%) reported for non-altricial species. This reflects a marked difference in the timing of the brain DHA accretion spurt, which occurs during the first half of the embryonic period of precocial birds, but is largely delayed until after hatching in the altricial species. By the time of fledging, the proportion of DHA in the swallow brain phospholipid has increased to 14.3%. For non-altricial birds, the brain DHA concentration at hatch shows little interspecies variation, despite major differences in yolk DHA content. The proportions of DHA in leg muscle phospholipid of the newly hatched swallow and sparrow, at 2.9% and 2.5%, respectively, are far lower than the value (6.7%) for the precocial chicken. Again, this relates to differences in developmental timing, with muscle DHA accretion occurring in the first half of the chicken's embryonic period, whereas, in the swallow, this increase is delayed until after hatching. By the time of fledging in the swallow, DHA forms 9.3% of muscle phospholipid fatty acids, equivalent to the level attained in chicken muscle at the mid-embryo stage. The results indicate a clear distinction between altricial and non-altricial avian species in the timing of tissue DHA accretion during development, presumably reflecting differences in neonatal functional maturity.  相似文献   

7.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of their profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria by the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old fowl. At hatching, the lengths of capillaries are similar in both muscles, but as chicks grow, the proportion of longer (more than 600 microm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.  相似文献   

8.
1. Growth of breast and leg muscles and excretion of N tau methyl histidine in layer (slow growing) and broiler (fast growing) chicks were measured at five time intervals between 2 and 33 days of age. 2. The results indicate that muscles of the broiler chick grow faster than in layer chicks and that breast muscles of both strains grow faster than leg muscles in the first 2 weeks after hatching. 3. N tau methyl histidine excretion by layer chicks is higher than that by broilers relative to body weight, musculature and relative maturity at all ages examined. 4. The results suggest that faster growth of muscles is accompanied by a lower rate of protein degradation although at ages of less than 2 weeks differences in protein synthesis rates may also contribute to muscle growth.  相似文献   

9.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of mitochondrial profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria across the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old chicks. At hatching, the length of capillaries is similar in both muscles, but as chicks grow, the proportion of longer (more than 600 µm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 135–144.Original Russian Text Copyright © 2005 by Belichenko, Korostyshevskaya, Maksimov, Shoshenko.  相似文献   

10.
The slow growth and large fat stores characteristic of many pelagic seabird chicks were generally assumed to reflect infrequent and unpredictable food provisioning by parents. Much less attention has been focused on the importance of intrinsic physiological processes in shaping patterns of development. In this study, we examined postnatal growth and changes in water content of different organs in fulmar chicks, Fulmarus glacialis, from Fair Isle, United Kingdom. After correcting for body size, mass growth rate was as high as in inshore-feeding species, which did not support the notion of an external constraint on growth imposed by the unpredictability of pelagic prey. Pectoral muscles and plumage grew more rapidly than other tissues. Pectorals also had a high water index, probably indicating slower maturation compared with leg muscles, which need to generate heat earlier on to free adults from brooding requirements. Lean dry mass of liver, kidney, and gut decreased markedly toward fledging, presumably because of high energetic costs of maintaining large metabolic machinery in older chicks and analogous to the situation in adult waders before migration. These results suggest that the general pattern of development of fulmars may be linked to changes in resource allocation as chicks grow and possibly a compromise at the tissue level between cell division and the attainment of mature function.  相似文献   

11.
Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.  相似文献   

12.
Morphological and physiological disparities between 20 captive and 11 wild capercaillies were determined. Birds, their pectoral and leg muscles, hearts, livers and gizzards were weighed. The length of small intestines and caeca were measured. Haemoglobin, haematocrit, glucose, triglycerides, total protein, uric acid and thyroid hormones as well as the cytochrome c-oxidase activity of the pectoral muscle and heart were determined. The glycogen and protein contents of pectoral and leg muscles and liver were analysed. Chemical composition (water, fat, protein, ash) of muscles and liver was determined. Captive males had heavier pectoral muscles than wild ones. The result was opposite in females. Wild birds had heavier hearts, livers, and gizzards, and also longer small intestines and caeca than captive birds. The cytochrome c-oxidase activity of pectoral muscle and heart was higher in wild than in hand-reared birds. The chemical composition of livers of wild birds differed significantly from that of hand-reared capercaillies. Plasma uric acid and T(4) concentrations were higher in captive than in wild birds. The observed differences in digestive system and liver can result in diminished ability of captive birds to utilise natural food nutrients. Decreased cytochrome c-oxidase activity of hand-reared birds can affect their takeoff and flying capacity and increase their vulnerability to predation. These facts may contribute to the low survival of hand-reared birds after release.  相似文献   

13.
14.
In order to show the tissue-specific distribution of troponin T (TnT) isoforms in avian skeletal muscles, their expression was examined by electrophoresis of the breast and leg muscles of seven avian species and immunoblotting with the antiserum against fast skeletal muscle TnT. It has been reported in the chicken that breast-muscle-type (B-type) and leg-muscle-type (L-type) TnT isoforms are expressed specifically in the adult breast and leg muscles, respectively. Their differential expression patterns were confirmed in all birds examined in this study. The expression of a segment encoded by the exon x series of TnT was also examined by immunoblotting with the antiserum against a synthetic peptide derived from the exon x3 sequence, because the segment has been shown to be included exclusively in the B-type, but not in the L-type TnT. The expression of the segment was found only in the breast muscle, but not in the leg muscle of all birds examined. TnT cDNA sequences from the duck breast and leg muscles were determined and showed that only B-type TnT had an exon x-related sequence, suggesting that the expression of B-type TnT containing the exon x-derived segment is conserved consistently in the birds.  相似文献   

15.
1. This paper discusses factors that influence the evolution of growth rate and determine its variation among species of birds. Growth rate is related to evolutionary fitness through the use of time, energy, and nutrients. In addition, balances between factors favouring rapid growth and those favouring slow growth may be investigated directly by experiment and by comparative observation. 2. David Lack (1968) proposed that the growth rate of the young is the optimum balance between selection for rapid growth to reduce the vulnerable period of development and selection for slow growth to reduce the energy requirements of the young. 3. To test Lack's hypothesis, the growth rates of birds, estimated by fitting sigmoid equations to curves relating weight to age, were surveyed widely from the literature. Among all species examined, growth rate was inversely related to adult weight. Among birds of similar size, most variation in growth rate was related to the degree of maturity of the neonate. Altricial chicks, which depend upon their parents for food and warmth, grow more rapidly than precocial chicks, which are self-sufficient shortly after hatching. Lack's hypothesis, which predicts a direct relationship between growth rate and mortality rate, was not supported. 4. I propose that the key to understanding variation in growth rate among birds lies in the balance between rate of cell proliferation or cell growth, on one hand, and acquisition of mature function, on the other. This idea is consistent with principles of cellular and developmental biology. It is supported by comparisons of (a) the neonates of different species, (b) the individual over the course of the developmental period, and (c) tissues whose use is acquired at different stages of development, wherein more mature individuals or tissues grow more slowly than those with less developed function. 5. Species of birds that are classified as semi-precocial develop precocially but grow rapidly. Although these seemingly violate the general rule relating growth rate to precocity, a closer inspection of their development reveals that they too support the rule. In the Common Tern, the legs, which are the key organ in precocial development, grow at the expected slow rate. The body as a whole grows rapidly because the growth increment of the legs is small and their growth is completed quickly. 6. Growth rates of precocial birds do not decrease abruptly at hatching. This points more to gradual tissue differentiation than to the pattern of procurement and allocation of energy as the primary control for growth rate. 7. Precocious development is favoured when the chicks are capable of self-feeding or when food supplies are distant from the next site and travelling time between one and the other is long. Precocity of the neonates frees both parents to feed at a distant food source. 8. Some species having diets with low levels of protein or other nutrients may grow slowly in order to match nutrient requirements to their availability in the diet. This pattern is indicated especially among the Procellariiformes, which feed an oily diet to their young, and also among tropical fruit-eating birds. 9. Some tropical, pelagically-feeding sea-birds that rear only one offspring at a time may not be able to procure food sufficient to support rapid chick growth. Alternative explanations for slow growth among these species include difficulty in obtaining essential nutrients and more precocious development of activity than in related species having more rapid growth.  相似文献   

16.
Effects of yolk androgens on postnatal growth of offspring have been widely studied but their physiological role in the growth control is not fully understood due to an inconsistency in obtained results. We investigated androgen-mediated maternal effects on postnatal growth in relation to endocrine control mechanisms using two lines of Japanese quail divergently selected for high (HET) and low (LET) egg testosterone (T) content. Embryonic growth did not differ between the lines. During the growth period HET quail were heavier and displayed longer tarsi as compared with LET quail, with more pronounced line differences in males than females. HET males were heavier than LET males from the age of 2 weeks, reached the age of maximum growth rate earlier, and displayed higher asymptotic body weight than LET males. Accelerated growth in HET males was not accompanied by increased postembryonic plasma T concentrations. Plasma triiodothyronine levels did not differ between lines while plasma thyroxine levels were decreased in HET as compared with LET female chicks. Line differences in body weight disappeared in adult quail suggesting that yolk androgens, increased in a physiological way, resulted in stimulation of juvenile growth rate in precocial Japanese quail under stable social and environmental conditions.  相似文献   

17.
A distinct daily rhythm of melatonin production was found in the pineal gland of both precocial Japanese quail (Coturnix coturnix japonica) and altricial European starling (Sturnus vulgaris) during the first day of postembryonic life. Rhythmic melatonin production was reflected in a rhythmic profile in the general circulation. Significant day-night differences in melatonin content were also observed in the eyes of Japanese quail.The amplitude of the rhythm in the quail pineal gland increased steadily during the first two weeks of postem-bryonic life. A transient increase in maximum melatonin concentration was observed at the end of the first week of life in the plasma but not in the pineal gland of quail suggesting that a metabolizing pathway or a changed ocular contribution may influence the melatonin profile in the circulation and its availability to other tissues. There was no delay in the postembryonic development of melatonin rhythmicity in the altricial starling in comparison with the precocial quail. The amplitude of the plasma melatonin rhythm did not increase over the first week of life in starlings as it did in quail and the only significant increase was found between 6- and 17-day old starlings.In general, the development of the rhythm resulted from an increase of dark-time values. The day-time concentrations were low in all age groups of both species. A one-hour light pulse suppressed the high dark-time melatonin concentrations in 1-, 7- and 14-day old Japanese quail as well as in 7- and 14-day old European starlings. The manner in which the rhythm develops suggests that the circadian pacemaker(s) as well as the mechanisms of photoreception and entrainment are developed in hatchlings of both species in spite of their otherwise different developmental strategies.  相似文献   

18.
Variability of egg weight, egg yolk content, neonatal growth rate and relationships of these parameters were studied in meat-type chicks. As it had been established the level of variability in neonatal growth traits was greater than variability of the egg morphology parameters. Egg weight had stronger influence on the chicks' neonatal growth rate than egg yolk content did. Low egg size was associated with limited neonatal growth rate variability, declined chick weight at hatching and increased relative growth rate throughout four days post hatch. Comparison of egg morphological parameters in two species having the same female definitive body weight--meat-type domestic fowl (precocial type) and brown pelican (altricial type) has shown, that, in contrary to predicted on the basis of avian developmental typology, egg weight to female body ratio was greater in brown pelican, egg yolk content was equal in both species.  相似文献   

19.
Growth and muscle protein turnover in the chick   总被引:2,自引:2,他引:0  
The growth rates of young chicks were varied from 0 to 10% per day by manipulation of the adequacy of the amino acid and energy supply. The rates of protein synthesis in the white breast (pectoralis thoracica) muscle and the dark leg (gastrocnemius and peronaeus longus) muscles were estimated by feeding l-[U-14C]tyrosine in amino acid/agar-gel diets (`dietary infusion'). This treatment rapidly and consistently produced an isotopic equilibrium in the expired CO2 and in the free tyrosine of plasma and the muscles. Wholebody protein synthesis in 2-week-old chicks was estimated from the tyrosine flux and was 6.4g/day per 100g body wt. In 1-week-old chicks the rate of protein synthesis was more rapid in the breast muscles than in the leg muscles, but decreased until the rates were similar in 2-week-old birds. Synthesis was also more rapid in fast-growing Rock Cornish broilers than in medium-slow-growing New Hampshire×Single Comb White Leghorn chicks. No or barely significant decrease in the high rates of protein synthesis, in the protein/RNA ratio and in the activity of RNA for protein synthesis occurred in non- or slow-growing chicks fed on diets deficient in lysine, total nitrogen or energy. Thus the machinery of protein synthesis in the young chick seems to be relatively insensitive to dietary manipulation. In the leg muscles, there was a small but significant correlation between the fractional rate of growth and protein synthesis. A decrease in the fractional rate of degradation, however, appeared to account for much of the accumulation of muscle protein in rapidly growing birds. In addition, the rapid accumulation of breast-muscle protein in rapidly growing chicks appeared to be achieved almost entirely by a marked decrease in the fractional rate of degradation.  相似文献   

20.
Cytofluorimetric study of ploidy levels in ventricular cardiomyocytes was carried out on 36 adult bird species belonging to 10 orders as well as on the quail Coturnix coturnix, of different ages. It was shown that polyploidization of quail cardiomyocytes occurs during the first 40 days after hatching and ends by the time growth is completed. In adult birds, the cardiomyocyte ploidy hardly changed at all. Interspecies comparison revealed that in the adult bird myocardium 2cx2 myocytes are predominant, accounting for at least 50% of the cell population. Multinuclear cells with three to eight diploid nuclei were widespread. The percentage of such cells was five to six times higher in precocial species than in altricial birds of the same weight. Myocytes with polyploid nuclei were rare. A significant interspecies variability of cardiomyocyte ploidy levels was observed. The most prominent differences were found between the precocial and the altricial birds. The mean number of genomes in cells correlated both with the body mass and with the growth rate of the birds. The differences between the precocial and altricial birds disappeared when a statistical method was used to eliminate the effect of the growth rate, but did not when the effect of body mass was eliminated. Among the altricial birds, which are generally immobile during growth, the cardiomyocyte ploidy levels also correlated more closely with growth rate than with body mass. The opposite was observed in the precocial birds, which are highly mobile from the first minutes of life. We conclude that the interspecies variability of bird cardiomyocyte ploidy levels is a result of changes in the balance between the cardiac functional load and the growth rate; this is manifested at the cellular level as a competition between the proliferation and differentiation of cardiomyocytes. J. Exp. Zool. 289:48-58, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号