首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The pyrolytic behaviour of (?)‐(S)‐nicotine in methanol was investigated using on‐line pyrolysis GC/MS to establish whether racemization to the R(+) antipode occurs and to identify other products of pyrolysis. The conditions used included pyrolysing the sample for 15 seconds in an atmosphere of 9% oxygen in nitrogen (275ml/min total flow) across the temperature range of 200°C–1000°C. A chiral Cyclodex‐B analytical column (30m × 0.25mm i.d. × 0.25 μm film thickness) was used to separate the enantiomers of nicotine, although the two enantiomer peaks were not baseline resolved. The results of the experiment shows that there is no increase in (+)‐(R)‐nicotine levels across a wide temperature range. This suggests that the elevated levels of (+)‐R‐nicotine observed in tobacco smoke (compared to tobacco leaf material) are not due to the pyrolytic auto‐racemization of (?)‐(S)‐nicotine but are a result of more complex interactions between (?)‐(S)‐nicotine and other smoke components. The pyrolysis of isotopically labelled nicotine established that nicotine undergoes thermal decomposition to β‐nicotyrine which in turn may decompose to other products. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Assessing the reactivity of optical antipodes is of central importance in drug research. Using the model of 2-methoxy-2-phenylacetic acid-4-nitrophenylester (MPE), the rate of hydrolysis in the presence of β-cyclodextrin (CD), hydroxyethyl- and hydroxypropyl-β-CD, as well as methyl-β-CD is studied photometrically and by means of HPLC (Chiralcel-OD-R-column). Both β-CD and hydroxyalkylated-β-CD catalyze (?)-(R)-enantiomers to a larger extent than (+)-(S)-enantiomers, resulting in an enrichment of the latter. Methyl-β-CD stabilizes the ester trifold, thus abolishing chiral discrimination. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The effects of (±)-, (+)-, and (?)-atenolol, sotalol, and amosulalol alone on the rat left atria and portal vein and on the respective β1- and β2-adrenoceptor-mediated responses to isoprenaline have been determined. (±)-Atenolol at 10?6 M had no effect whereas high concentrations of (+)- and (?)-sotalol, 10?5–10?4 M, and (±)-, (+)-, and (?)-amosulalol depressed the response of the rat left atria to cardiac stimulation which indicates membrane stabilizing activity. None of the drugs tested had any effect alone on the rat portal vein. The order of potency as antagonists was (±)-amosulalol > (±)-atenolol > (±)-sotalol at β1-adrenoceptors and (±)-amosulalol > (±)-sotalol > (±)-atenolol at β2-adrenoceptors. (±)-Atenolol and (±)-amosulalol are β1-selective whereas (±)-sotalol is β2-selective. For each of the racemic β-blockers, the β1- and β2-adrenoceptor blocking activity was predominantly due to the (?)-enantiomer. © 1993 Wiley-Liss, Inc.  相似文献   

4.
NMR spectroxcopy has been used to compare the interaction of ephedrine and N-methylephedrine with β-cyclodextrin, heptakis(2,3-di-O-acetyl)β-cyclodextrin, heptakis(6-O-acetyl)β-cyclodextrin. The stoichiometry of the complexes formed between all three cyclodextrins and N-methylephedrine was found to be 1:1 by UV spectroscopy by means of the Job technique. NMR spectra of the single enantiomers of ephedrine and N-methylephedrine in the presence of all three cyclodextrins gave information about the parts of the ligands which interact differently with the host molecules and may be responsible for the chiral discrimination. To quantify the complex stabilities, binding constants were calculated from the changes in the chemical shifts of the ligand signals upon complexation. Analyses of the coupling constants of both species showed that no significant conformational change occurs upon complexation. ROESY spectra of these optical isomers with all three cyclodextrins provided detailed information about the geometry of the complexes. Different intermolecular cross-peaks between the individual isomers of ephedrine and N-Methylephedrine were found for native β-cyclodextrin and its 2,3-diacetylated derivative but not for 6-acetyl cyclodextrin. Analyses of the intramolecular cross-signals of the ligands confirmed that no significant conformational change occurs upon complexation. Chirality 9:211–219, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
(2S,3S)-3-methyl- and 3-isopropylaspartic acids were synthesized by bioconversion of the corresponding alkylfumarates (mesaconate and 3-isopropylfumarate) using β-methylaspartase from cell-free extracts of Clostridium tetanomorphum. Optically pure (2S,3S)-3-alkylaspartic acids were transformed in several steps to benzyl (3S,4R)-3-alkylmalolactonates without any racemization of the two chiral centers. These optically active α,β-substituted-β-lactones were polymerized by anionic ring opening polymerization yielding optically active semi-crystalline polyesters. 13C NMR analysis of poly[benzyl β-3-isopropylmalate] in CDCl3 has shown that only the iso-type stereosequence is present in the polymer, indicating that the macromolecular chain is constituted by the only units of benzyl β-(2S,3S)-3-isopropylmalate monomer. The polymerization reaction was done without any racemization of the two stereogenic centers as in the case of benzyl (3S,4R)-3-methylmalolactonate. © 1996 Wiley-Liss, Inc.  相似文献   

6.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed and validated for the measurement of (−)-2′-deoxy-3′-thiacytidine (3TC) in human serum. The method included precipitation of serum proteins by trichloroacetic acid (20%, w/v) treatment followed by centrifugation. The resulting supernatant was directly injected and 3TC was isocratically chromatographed on a reversed-phase C18 column using a mixture of phosphate buffer and methanol (88.3:11.7, v/v) and monitored at 280 nm. The limit of quantitation was 20 ng/ml using 100 μl of serum. The standard curve was linear within the range of 20–10 000 ng/ml. Replicate analysis of three quality control samples (40–1500 ng/ml) led to satisfactory intra- and itner-assay precision (coefficient of variation from 3.0 to 12.9%) and accuracy (deviation from −6.3 to 9.7%). Moreover, sample treatment processes including human immunodeficiency virus (HIV) heat-inactivation, exposure at room temperature and freezing-thawing cycles did not influence the stability of the analyte. This assay was successfully applied to the determination of 3TC serum levels in HIV-infected patients. In addition, preliminary results indicated that this procedure may also be extended to the measurement of 3TC in human plasma and urine.  相似文献   

8.
9.
Optical resolution of β-(1-naphthyl)alanine and β-(2-naphthyl)alanine have been efficiently carried out through enzymatic hydrolysis of their methyl ester and/or N-acetyl ester derivatives by immobilized enzymes. Difficulties related to the lipophilic character of these amino acids were overcome by using emulsions of n-butyl acetate–water as reaction medium. The use of an automatic recirculating apparatus allowed reproducible and repetitive use of the immobilized biocatalysts.  相似文献   

10.
11.
The enantioselective hydrogenation of several α-keto acid derivatives with rhodium diphosphine catalysts has been investigated using a random screening approach. The neutral rhodium catalyst prepared in situ from bis(2,5-norbornadiene rhodium chloride) and NORPHOS has been found to be an excellent catalyst for preparing aliphatic α-hydroxy esters in high optical purities. The reaction parameters for the hydrogenation of ethyl 2-oxo-4-phenyl-butyrate, an intermediate for the ACE inhibitor Benazepril, were optimized and the best optical yields obtained were 96%.  相似文献   

12.
(+)-(S)-Ibuproxam, a prodrug of (+)-(S)-ibuprofen, the pharmacologically active component of ibuprofen, was synthesized in order to minimize side effects (especially gastric irritation) and reduce effective dose. The low water solubility of (+)-(S)-ibuproxam, which prevents rapid dissolution and absorption from the gastrointestinal tract, was overcome by complexation with β-cyclodextrin and its derivatives. The inclusion complex formation was confirmed by differential scanning calorimetry (DSC), by 1H-NMR spectroscopy, and X-ray powder diffractometry. The physicochemical characteristics of ibuproxam were significantly improved by the complexation. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

14.
Both (R)- and (S)-4-hydroxypentylaminoacetamide have been synthesized by reductive amination of glycinamide on the γ-valerolactols corresponding to (R)- and (S)-γ-valerolactone, respectively. These enantiomeric lactones were readily obtained in high enantiomeric excess (ee) by enzymic porcine pancreatic lipase (PPL) kinetic resolution of rac-methyl γ-hydroxyvalerate. © 1992 Wiley-Liss, Inc.  相似文献   

15.
Rat pancreatic fragments and acinar preparations were incubated in vitro to characterize further the changes in phosphoinositide metabolism that occur during secretagogue action. Two distinct responses were discernible. The first response, most notably involving a decrease in phosphatidylinositol content, was (a) observed at lower carbachol concentrations in dose-response studies, (b) inhibited by incubation in Ca2+-free media containing 1 mM EGTA, (c) associated with increases in inositol monophosphate production, and (d) provoked by all tissue secretagogues (carbachol, cholecystokinin, secretin, insulin, dibutyryl cAMP and the ionophore A23187), regardless of whether their mechanism of action primarily involved Ca2+ mobilization or cAMP generation. This decrease in phosphatidylinositol content was at least partly due to phospholipase C (and/or D) activation, as evidenced by the increase in inositol monophosphate. The second response, most notably involving markedly increased incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol, was (a) observed at higher carbachol concentrations, (b) not influenced by incubation in Ca2+-free media containing 1 mM EGTA, and (c) associated with increases in inositol triphosphate production. This 32PO4 turnover response was probably largely the result of phospholipase C-mediated hydrolysis of phosphatidylinositol 4′,5′-diphosphate, which, as shown previously, also occurs at higher carbachol concentrations and is insensitive to comparable EGTA-induced Ca2+ deficiency. This phosphatidylinositol 4′,5′-diphosphate hydrolysis response was only observed in the action of agents (carbachol and cholecystokinin) which mobilize Ca2+ via activation of cell surface receptors. The present results indicate that phosphatidylinositol and phosphatidylinositol 4′,5′-diphosphate hydrolysis are truly separable responses to secretagogues acting in the rat pancreas. Furthermore, phosphatidylinositol 4′,5′-diphosphate, rather than phosphatidylinositol hydrolysis is more likely to be associated with receptor activation and Ca2+ mobilization.  相似文献   

16.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Maria Pawlowska 《Chirality》1991,3(2):136-138
The paper demonstrates that the technique of solvent generated liquid--solid chromatography can be used to create normal phase systems for chiral separations. The chiral adsorption layer was generated by pumping a binary hexane:ethanol eluent containing a small fraction of permethylated β-cyclodextrin through a column packed with microparticulate silica. This technique leads to columns with good time stability and reproducibility. The possibility of generating normal phase systems with permethylated β-cyclodextrin as chiral component via the mobile phase broadens the range of phase system which can be used to separate enantiomers by HPLC.  相似文献   

18.
Methyl β- -glucopyranoside reacted with a 4-molar excess of the Mitsunobu reagents (triphenylphosphine–diethyl azodicarboxylate–benzoic acid) under Weinges et al. [Carbohydr. Res., 164 (1987) 453–458] conditions to furnish four differently benzoylated methyl β- -allopyranosides in a very good overall yield. The same reaction applied to methyl α- -glucopyranoside yielded allosides in a low yield and nine other sugar products. These results give an insight into the course of the Mitsunobu esterification–inversion reaction.  相似文献   

19.
Air-dried cells of Hansenula nonfermentans AKU 4332 catalyzed the production of (S)-3-pentyn-2-ol from (RS)-3- pentyn-2-ol acetate ester at 10% (v/v). The product was formed at 96.6% e.e. with a molar yield of 45% in 24 h. © Rapid Science Ltd. 1998  相似文献   

20.
Three β-adrenergic receptor subtypes are now known to be functionally expressed in mammals. All three belong to the R7G family of receptors coupled to G-proteins, and characterized by an extracellular glycosylated N-terminal and an intracellular C-terminal region and seven transmembrane domains, linked by three exta- and three intracellular loops. The catecholamine ligand binding domain, studied using affinity-labeling and site-directed mutagenesis, is a pocket lined by residues belonging to the transmembrane domains. The region responsible for the interaction with the Gs protein which, when activated, stimulates adenylyl cyclase, is composed of residues belonging to the parts most proximal to the membrane of intracellular loop i3 and the C-terminal region. The pharmacology of the three subtypes is quite distinct: in fact most of the potent β12 antagonists (the well known β blockers) act as agonists on β3. The subtype is resistant to short-term desensitization mediated by phosphorylation through PKA or βARK, in stark contrast to the β1 or β2 subtypes. Various compounds (dexamethasone, butyrate, insulin) up regulate β1 or β1 subtypes while down-regulating β3 whose expression strictly correlates with differentiation of 3T3-F442A fibroblasts into adipocytes, thus confirming that the expression of the three subtypes may each be regulated independently to exert a specific physiologic role in different tissues or at different stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号