首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcium channel blockers, verapamil or felodipine, were given to genetically obese 6 and 11-month-old female SHHF/Mcc-facp (SHHF: Spontaneous Hypertension Heart Failure) rats for 8 weeks to investigate their effects on glucose and lipid metabolism and obesity. Both antihypertensive agents significantly decreased systolic blood pressure. In 11-month-old rats, verapamil treatment significantly decreased body weight after 4 weeks whereas with felodipine it was only significantly reduced after 8 weeks. In 6-month-old rats, verapamil significantly curtailed body weight gain. Subcutaneous fat depots were smaller, and abdominal fat depots were larger in verapamil rats compared to felodipine or control rats. Oral glucose tolerance tests in the 6-month-old verapamil and the 11-month-old felodipine groups showed improved glucose tolerance compared to their respective control groups. After 8 weeks of treatment, fasting plasma glucose levels were lower in 6-month-old verapamil rats compared to felodipine and control rats and were decreased by both verapamil and felodipine treatments as compared to control in 11-month-old rats. During the oral glucose tolerance test in 6-month-old rats, both fasting plasma insulin and the area under the insulin curve were increased in verapamil compared to both control and felodipine groups. When compared to controls, plasma cholesterol was increased by verapamil in both age groups, but was significantly decreased by felodipine after 8 weeks of treatment in the 11-month-old group. Plasma triglycerides increased in all control rats compared to initial levels; however, verapamil and felodipine groups showed lower triglycerides in both age groups. In 6-month-old rats, the percentages of plasma HDL significantly increased in both treatment groups as compared to control. This study shows that verapamil and felodipine depressed body weight gain in the young rats, reduced body weight in the old rats, improved lipid parameters and glucose tolerance, but had the opposite effects on body fat distribution and insulin levels in obese female SHHF rats.  相似文献   

3.
The existence of a restriction fragment length polymorphism (RFLP) closely linked to the fatty locus between the Zucker (Z) and Brown Norway (BN) rat strains allows evaluation of early effects of the fatty (fa) gene using offspring of back-crosses (N2) between F1 females and Zucker obese males. We examined several metabolic characteristics of N2 animals to determine if these hybrid animals exhibited similar characteristics of the obese syndrome to those of Zucker rats. Females from crosses of obese male Zucker (fd/fa) and lean female BN (+/+) rats were back-crossed to their sires, resulting in twelve N2 litters. At 9 weeks of age, liver, spleen, interscapular brown fat (IBAT), and gonadal, retroperitoneal (RP), and inguinal fat depots were removed and weighed. Samples of the RP depot were analyzed for cell size and number. Obese N2 rats were hyperphagic, with body weights in the range of those of obese Zucker rats. Obese N2 rats were also hyperinsulinemic [mean f SEM, pU/ml: females, 7.9 ± 0.6 vs. 82.1 f 8.4 (lean vs. obese); males, 10.5 ± 1.6 vs. 128.5 ± 13.4 (lean vs. obese)] and mildly hyperglycemic [mean ± SEM, mg/dl: females, 104.1 ± 2.0 vs. 139.0 ± 14.7 (lean vs. obese); males, 100.9 ± 2.6 vs. 132.0 ± 2.8 (lean vs. obese) p ≤ 0.05]. White fat depots in obese tats were 3 to 7 times heavier than those in lean rats; adipocyte numbers in RP depots were 50% greater in obese than in lean rats; and cell size was more than 3 times larger. IBAT, liver, and spleen were also heavier in obese vs. lean rats, while tail lengths were shorter. Percent lean carcass mass and % carcass protein were about 30% greater in lean vs. obese rats, while % carcass fat in obese rats was 5 times greater than that of lean rats. Thus, phenotypic expression of the fa gene in ZBN hybrid animals, with approximately 25% of their genetic background coming from the BN strain, appears to be similar to that in Zucker rats. Given the similarity of phenotypic expression of the fa gene between the Zucker strain and ZBN hybrids, it is plausible to consider using ZBN hybrids for studies of early manifestations of fa gene action prior to onset of detectable obesity .  相似文献   

4.
Ferrara, Cynthia M., W. Michael Sherman, Nicole Leenders,Sylvia A. McCune, and Karla Roehrig. Exercise training and theglucose transport system in obeseSHHF/Mcc-facprats. J. Appl. Physiol. 81(4):1670-1676, 1996.The effects of a similar exercise trainingstimulus on maximal insulin-stimulated (MIS) plasma membrane glucosetransporter number and glucose transport were determined in lean andobeseSHHF/Mcc-facprats. Six-week-old lean and obese male rats were randomly divided intofour groups: lean sedentary (LSed), obese sedentary (OSed), leanexercise (LEx), and obese exercise (OEx). An 8- to 12-wk treadmillrunning program equalized daily muscular work for LEx and OEx. Plasmamembranes were isolated from control and MIS muscles of mixed fibertypes. MIS significantly increased glucose transport (3.4- and2.8-fold) in LSed and OSed, respectively. MIS significantly increased glucose transporter number (2.5-fold) in LSed, but there wasno increase in glucose transporter number in OSed. Peak oxygen uptakeand citrate synthase activity were increased a similar amount for LExand OEx groups, demonstrating a similar training stimulus. MISsignificantly and similarly increased glucose transport in LEx and OEx(4.4- and 5.1-fold, respectively). The effects of MIS on plasmamembrane glucose transporter number in the exercise-trained rats weresimilar to the responses observed in the sedentary lean and obesegroups. MIS significantly increased glucose transporter number(2.6-fold) in LEx, whereas there was no increase in glucose transporternumber in OEx. The reduction in MIS glucose transport in OSed appearsto be related to a defect in the processes associated with thetranslocation of glucose transporters to the plasma membrane. Exercisetraining of the obese rats apparently did not alter this defect.Similar increases in peak oxygen uptake, citrate synthase, and MISglucose transport in LEx and OEx groups suggest that insulin resistancedoes not limit the ability of the glucose transport system to adapt toexercise training in the obese maleSHHF/Mcc-facprats.

  相似文献   

5.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   

6.
7.
In order to better understand the link between obesity and type 2 diabetes, lipolysis and its adrenergic regulation was investigated in various adipose depots of obese adult females SHR/N-cp rats. Serum insulin, glucose, free fatty acids (FFA), triglycerides (TG) and glycerol were measured. Adipocytes were isolated from subcutaneous (SC), parametrial (PM) and retroperitoneal (RP) fat pads. Total cell number and size, basal lipolysis or stimulated by norepinephrine (NE) and BRL 37344 were measured in each depot. Obese rats were hyperinsulinemic and hyperglycemic, suggesting high insulin resistance. They presented a marked dyslipidemia, attested by increased serum FFA and TG levels. High serum glycerol levels also suggest a strong lipolytic rate. Obese rats showed an excessive development of all fat pads although a more pronounced effect was observed in the SC one. The cellularity of this depot was increased 8 fold when compared to lean rats, but these fat cells were only 1.5 to 2-fold larger. SC adipocytes showed a marked increase in their basal lipolytic activity but a lack of change in responsiveness to NE or BRL 37344. The association between high basal lipolysis and increased cellularity yields to a marked adipose cell lipolytic rate, especially from the SC region. SHR/N-cp rats were characterized by a hyperplasic type of obesity with an excessive development of the SC depot. The dyslipidemia, attested by an altered serum lipid profile could be attributed to excessive lipolysis that contributes to increased FFA levels, and to early development of insulin resistance through a lipotoxicity effect.  相似文献   

8.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

9.
The question of effects of long-term melatonin (MEL) administration have not yet been explained sufficiently, especially its metabolic consequences in young persons and animals. The aim of the present study was to analyze the effects of MEL given during prolonged time (for 3 months) and chronically (for 6 months) at the dose of 4 μg/mL of tap water, on the selected metabolic and hormonal parameters in young female and male Wistar:Han (WH) rats. The weights of selected organs, tissues, body weight gains and food and water intake were registered. Six weeks aged rats were adapted to standard housing conditions and light regimen L:D=12:12 h, fed standard laboratory diet and drank tap water (controls) or MEL solution ad libitum; finally they were sacrificed after overnight fasting. Prolonged MEL administration decreased serum glucose concentration and increased triacylglycerol and malondialdehyde concentration/content in the liver in females. In males MEL increased concentrations of serum phospholipids, corticosterone and liver malondialdehyde. MEL treatment reduced the body weight in both sexes and weight of epididymal fat in males, without any alterations of food and water intake. Chronic MEL administration reduced serum glucose concentration and increased concentration/content of glycogen, triacylglycerol and cholesterol in the liver and glycogen concentration/content in heart muscle in males. In females, the significant rise of serum corticosterone concentration and liver malondialdehyde content was recorded. MEL significantly increased liver weight and decreased thymus weight in males. MEL administration increased temporarily water intake in males, body and epididymal fat weights were similar to that in controls. Body weight of MEL drinking females was reduced in the 1st half of experiment only; the food and water intake did not differ from control group. The response in WH rats on MEL was more prominent as in the Sprague-Dawley strain (our previous studies). Male rats were generally more affected, probably due to higher daily and total consumption of melatonin.  相似文献   

10.
Objective: To characterize the gastrointestinal tract at the onset and in well‐established obesity. Methods and Procedures: Lean (+/?) and obese (cp/cp) male JCR:LA‐cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results: At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well‐established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide‐1 (GLP‐1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion: Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity.  相似文献   

11.
12.
Maternal obesity in women is increasing worldwide. The objective of this study was to evaluate differences in adipose tissue metabolism and function in adult male offspring from obese and control fed mothers subjected to an ad libitum feeding challenge. We developed a model in which obese ewes were fed 150% of feed provided for controls from 60 days before mating to term. All ewes were fed to requirements during lactation. After weaning, F1 male offspring were fed only to maintenance requirements until adulthood (control = 7, obese = 6), when they were fed ad libitum for 12 weeks with intake monitored. At the end of the feeding challenge offspring were given an intravenous glucose tolerance test (IVGTT), necropsied, and adipose tissue collected. During the feeding trial F1obese males consumed more (P < 0.01), gained more weight (P < 0.01) and became heavier (P < 0.05) than F1control males. During IVGTT, Obese F1 offspring were hyperglycemic and hypoinsulinemic (P < 0.01) compared to F1 control F1. At necropsy perirenal and omental adipose depots weights were 47% and 58% greater respectively and subcutaneous fat thickness 41% greater in F1obese vs F1control males (P < 0.05). Adipocyte diameters were greater (P ≤ 0.04) in perirenal, omental and subcutaneous adipose depots in F1obese males (11, 8 and 7% increase vs. control, respectively). When adipose tissue was incubated for 2 hrs with C-14 labeled acetate, subcutaneous, perirenal, and omental adipose tissue of F1 obese males exhibited greater incorporation (290, 83, and 90% increase vs. control, respectively P < 0.05) of acetate into lipids. Expression of fatty acid transporting, binding, and syntheses mRNA and protein was increased (P < 0.05) compared to F1 control offspring. Maternal obesity increased appetite and adiposity associated with increased adipocyte diameters and increased fatty acid synthesis in over-nourished adult male offspring.  相似文献   

13.
Objective: To determine the variation in preadipocyte isolation procedure and to assess the number and function of preadipocytes from subcutaneous and omental adipose tissue of obese individuals. Research Methods and Procedures: The preadipocyte number per gram of adipose tissue in the abdominal‐subcutaneous and abdominal‐omental adipose stores of 27 obese subjects with a BMI of 44 ± 10 kg/m2 and an age of 40 ± 9 years was determined. Results: The assessment of the preadipocyte number was found to be labor intensive and error prone. Our data indicated that the number of stromal vascular cells (SVCs), isolated from the adipose tissue by collagenase digestion, was dependent on the duration of collagenase treatment and the size and the origin of the biopsy. In addition, the fat accumulation and leptin production by differentiated SVCs were dependent on the number of adherent SVCs (aSVCs) in the culture plate and the presence of proteins derived from serum and peroxisome proliferator‐activated receptor ligands. Discussion: Using our standardized isolation and differentiation protocol, we found that the number of SVCs, aSVCs, leptin production, and fat accumulation still varied considerably among individuals. Interestingly, within individuals, the number of SVCs, aSVCs, and the leptin production by differentiating aSVCs from both the subcutaneous and the omental fat depots were associated, whereas fat accumulation was not. In obese to severely obese subjects, differences in BMI and age could not explain differences in SVCs, aSVCs, leptin production, and fat accumulation.  相似文献   

14.
To clarify the role of acyl-CoA synthetase in development of obesity, the mRNA levels and activities were studied in Zucker fatty rats (fa/fa). In Zucker fatty rats compared with their lean littermates, marked enhancement of ACS were observed in adipose tissues. Obese/lean rats ratio of ACS activity and mRNA in abdominal subcutaneous fat (3.3- and 3.9-fold, respectively) were greater than in mesenteric fat (2.0- and 2.2-fold). The enhancement of ACS activity and mRNA in the liver of fatty rats (1.2- and 1.8-fold) were less than those in the adipose tissues. There were no enhancement of ACS activities and mRNA levels in heart tissue of the obese rats. LPL mRNA levels were also enhanced in adipose tissue of fatty rats and obese/lean ratio of LPL mRNA was also higher in abdominal subcutaneous fat than mesenteric fat (6.2- vs 3.1-fold). The larger obese/lean rats ratio of LPL and ACS parameters in abdominal subcutaneous fat than mesenteric fat may be related to the observation that the increase of subcutaneous fat weight was larger than that of mesenteric fat weight in fatty rats (21.1- vs 4.9-fold). Integrated enhancement of LPL and ACS gene expression in adipose tissue may play an important role in the development of obesity.  相似文献   

15.
The JCR:LA-cp rat is a strain incorporating the corpulent (cp) gene. When homozygous for the cp gene, the rats are hyperphagous, hyperinsulinemic, hyperlipidemic and obese. The corpulent male rats develop atherosclerotic and myocardial lesions from an early age, while corpulent female and lean rats do not develop lesions. The hyperlipidemia is due to elevated levels of VLDL resulting in moderately raised cholesterol levels and markedly elevated triacylglycerol levels. The VLDL concentrations are similar in corpulent male and female rats at an early age with both having much higher levels than lean rats. As the animals age, the VLDL hyperlipidemia in the corpulent male increases at 3 months and then decreases slowly and rises again at 12 months of age. The corpulent female rats show higher triacylglycerol and phospholipid concentrations than the males at 3 months age and reach values over 1000 mg/100 ml by 9 months of age, then decrease at 12 months of age. The cholesterol concentrations of the corpulent females are greater than those of the males from 9 months of age. Thus, in the period of life up to middle age, the cardiovascular disease incidence does not correlate with the degree of hyperlipidemia. The disease progression does correlate with the severity of insulin resistance and glucose intolerance, which is more severe in the corpulent male than female rats. The results suggest that the hyperlipidemia must be a necessary condition for development of atherosclerotic disease in this strain of rats, but it is not a sufficient condition.  相似文献   

16.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   

17.
Obesity modifies the body geometry by adding mass to different regions and it influences the biomechanics of activities of daily living. Weight influences postural stability, but there is no consensus as to whether the different fat distribution in males and females produces gender‐related effects on balance. The aim of this study was to investigate the effect of body weight increases on postural performance in males and females. A total of 22 obese females (BMI: 41.1 ± 4.1 kg/m2) and 22 obese males (BMI: 40.2 ± 5 kg/m2) were analyzed during a static posture trial on a force platform in standardized conditions. Twenty healthy subjects (10 females, 10 males) constituted the control group. We computed the following parameters related to the center of pressure (CoP): velocity and displacements along the antero‐posterior (AP) and medio‐lateral axis (ML). We found several statistically significant differences between healthy and obese men, in particular regarding the AP and ML CoP parameters, which were correlated to body weight (r = 0.36–0.58). The comparison between healthy and obese females pointed out statistically significant differences in AP parameters and no significant differences in ML displacements. Body weight was found to correlate with AP parameters (r = 0.36–0.74), but not with ML displacements. The increased body mass seems to produce AP instability in both genders and ML destabilization only in males. Rehabilitation programs should take these findings into account by adopting specific interventions to improve ML control in obese males, and through weight loss and strengthening of ankle flexors/extensors in both genders.  相似文献   

18.
Age‐related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ‐agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65–79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m2) and women (n = 40, BMI = 33.3 ± 4.9 kg/m2) during weight loss. All participants underwent a 16‐week hypocaloric weight‐loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow‐up using computed tomography (CT). Lean mass was measured using dual X‐ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (?1,160 vs. ?647 cm3, P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (?104 vs. ?298 cm3, P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: ?43 vs. ?88 cm3, P = 0.005; women: ?34 vs. ?59 cm3, P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.  相似文献   

19.
20.
Objective: To test a newly developed dual energy X‐ray absorptiometry (DXA) method for abdominal fat depot quantification in subjects with anorexia nervosa (AN), normal weight, and obesity using CT as a gold standard. Design and Methods: 135 premenopausal women (overweight/obese: n = 89, normal‐weight: n = 27, AN: n = 19); abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and total adipose tissue (TAT) areas determined on CT and DXA. Results: There were strong correlations between DXA and CT measurements of abdominal fat compartments in all groups with the strongest correlation coefficients in the normal‐weight and overweight/obese groups. Correlations of DXA and CT VAT measurements were strongest in the obese group and weakest in the AN group. DXA abdominal fat depots were higher in all groups compared to CT, with the largest % mean difference in the AN group and smallest in the obese group. Conclusion: A new DXA technique is able to assess abdominal fat compartments including VAT in premenopausal women across a large weight spectrum. However, DXA measurements of abdominal fat were higher than CT, and this percent bias was most pronounced in the AN subjects and decreased with increasing weight, suggesting that this technique may be more useful in obese individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号