首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine memory models for multisite capture–recapture data. This is an important topic, as animals may exhibit behavior that is more complex than simple first‐order Markov movement between sites, when it is necessary to devise and fit appropriate models to data. We consider the Arnason–Schwarz model for multisite capture–recapture data, which incorporates just first‐order Markov movement, and also two alternative models that allow for memory, the Brownie model and the Pradel model. We use simulation to compare two alternative tests which may be undertaken to determine whether models for multisite capture–recapture data need to incorporate memory. Increasing the complexity of models runs the risk of introducing parameters that cannot be estimated, irrespective of how much data are collected, a feature which is known as parameter redundancy. Rouan et al. (JABES, 2009, pp 338–355) suggest a constraint that may be applied to overcome parameter redundancy when it is present in multisite memory models. For this case, we apply symbolic methods to derive a simpler constraint, which allows more parameters to be estimated, and give general results not limited to a particular configuration. We also consider the effect sparse data can have on parameter redundancy and recommend minimum sample sizes. Memory models for multisite capture–recapture data can be highly complex and difficult to fit to data. We emphasize the importance of a structured approach to modeling such data, by considering a priori which parameters can be estimated, which constraints are needed in order for estimation to take place, and how much data need to be collected. We also give guidance on the amount of data needed to use two alternative families of tests for whether models for multisite capture–recapture data need to incorporate memory.  相似文献   

2.
Longitudinal Configural Frequency Analysis (CFA) seeks to identify, at the manifest variable level, those temporal patterns that are observed more frequently (CFA types) or less frequently (CFA antitypes) than expected with reference to a base model. This article discusses, compares, and extends two base models of interest in longitudinal data analysis. The first of these, Prediction CFA (P-CFA), is a base model that can be used in the configural analysis of both cross-sectional and longitudinal data. This model takes the associations among predictors and among criteria into account. The second base model, Auto-Association CFA (A-CFA), was specifically designed for longitudinal data. This model takes the auto-associations among repeatedly observed variables into account. Both models are extended to accommodate covariates, for example, stratification variables. Application examples are given using data from a longitudinal study of domestic violence. It is illustrated that CFA is able to yield results that are not redundant with results from log-linear modeling or multinomial regression. It is concluded that CFA is particularly useful in the context of person-oriented research.  相似文献   

3.
Fluorescence recovery after photobleaching (FRAP) is used to obtain quantitative information about molecular diffusion and binding kinetics at both cell and tissue levels of organization. FRAP models have been proposed to estimate the diffusion coefficients and binding kinetic parameters of species for a variety of biological systems and experimental settings. However, it is not clear what the connection among the diverse parameter estimates from different models of the same system is, whether the assumptions made in the model are appropriate, and what the qualities of the estimates are. Here we propose a new approach to investigate the discrepancies between parameters estimated from different models. We use a theoretical model to simulate the dynamics of a FRAP experiment and generate the data that are used in various recovery models to estimate the corresponding parameters. By postulating a recovery model identical to the theoretical model, we first establish that the appropriate choice of observation time can significantly improve the quality of estimates, especially when the diffusion and binding kinetics are not well balanced, in a sense made precise later. Secondly, we find that changing the balance between diffusion and binding kinetics by changing the size of the bleaching region, which gives rise to different FRAP curves, provides a priori knowledge of diffusion and binding kinetics, which is important for model formulation. We also show that the use of the spatial information in FRAP provides better parameter estimation. By varying the recovery model from a fixed theoretical model, we show that a simplified recovery model can adequately describe the FRAP process in some circumstances and establish the relationship between parameters in the theoretical model and those in the recovery model. We then analyze an example in which the data are generated with a model of intermediate complexity and the parameters are estimated using models of greater or less complexity, and show how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we show how sophisticated global sensitivity analysis can be used to detect over-fitting when using a model that is too complex.  相似文献   

4.
The statistical tools available to ecologists are becoming increasingly sophisticated, allowing more complex, mechanistic models to be fit to ecological data. Such models have the potential to provide new insights into the processes underlying ecological patterns, but the inferences made are limited by the information in the data. Statistical nonestimability of model parameters due to insufficient information in the data is a problem too‐often ignored by ecologists employing complex models. Here, we show how a new statistical computing method called data cloning can be used to inform study design by assessing the estimability of parameters under different spatial and temporal scales of sampling. A case study of parasite transmission from farmed to wild salmon highlights that assessing the estimability of ecologically relevant parameters should be a key step when designing studies in which fitting complex mechanistic models is the end goal.  相似文献   

5.
The ratio of nonsynonymous (dN) to synonymous (dS) substitution rates, omega, provides a measure of selection at the protein level. Models have been developed that allow omega to vary among lineages. However, these models require the lineages in which differential selection has acted to be specified a priori. We propose a genetic algorithm approach to assign lineages in a phylogeny to a fixed number of different classes of omega, thus allowing variable selection pressure without a priori specification of particular lineages. This approach can identify models with a better fit than a single-ratio model, and with fits that are better than (in an information theoretic sense) a fully local model, in which all lineages are assumed to evolve under different values of omega, but with far fewer parameters. By averaging over models which explain the data reasonably well, we can assess the robustness of our conclusions to uncertainty in model estimation. Our approach can also be used to compare results from models in which branch classes are specified a priori with a wide range of credible models. We illustrate our methods on primate lysozyme sequences and compare them with previous methods applied to the same data sets.  相似文献   

6.
Royle JA 《Biometrics》2004,60(1):108-115
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.  相似文献   

7.
Halley (2003) proposed that parameter drift decreases the uncertainty in long‐range extinction risk estimates, because drift mitigates the extreme sensitivity of estimated risk to estimated mean growth rate. However, parameter drift has a second, opposing effect: it increases the uncertainty in parameter estimates from a given data set. When both effects are taken into account, parameter drift can increase, sometimes substantially, the uncertainty in risk estimates. The net effect depends sensitively on the type of drift and on which model parameters must be estimated from observational data on the population at risk. In general, unless many parameters are estimated from independent data, parameter drift increases the uncertainty in extinction risk. These findings suggest that more mechanistic PVA models, using long‐term data on key environmental variables and experiments to quantify their demographic impacts, offer the best prospects for escaping the high data requirements when extinction risk is estimated from observational data.  相似文献   

8.
Models of the distribution of rare and endangered species are important tools for their monitoring and management. Presence data used to build up distribution models can be based on simple random sampling, but this for patchy distributed species results in small number of presences and therefore low precision. Convenience sampling, either based on easily accessible units or a priori knowledge of the species habitat but with no known probability of sampling each unit, is likely to result in biased estimates. Stratified random sampling, with strata defined using habitat suitability models [estimated in the resource selection functions (RSFs) framework] is a promising approach for improving the precision of model parameters. We used this approach to sample the Tibetan argali (Ovis ammon hodgsoni) in Indian Transhimalaya in order to estimate their distribution and to test if it can lead to a significant reduction in survey effort compared to random sampling. We first used an initial sample of argali feeding sites in 2005 and 2006 based on a priori selected vantage points and survey transects. This initial sample was used to build up an initial distribution model. The spatial predictions based on estimated RSFs were then used to define three strata of the study area. The strata were randomly sampled in 2007. As expected, much more presences per hour were obtained in the high quality strata compared to the low quality strata—1.33 obs/h vs. 0.080/h. Furthermore the best models selected on the basis of the prospective sample differed from those using the first a priori sample, suggesting bias in the initial sampling effort. The method therefore has significant implications for decreasing sampling effort in terms of sampling time in the field, especially when dealing with rare species, and removing initial sampling bias.  相似文献   

9.
The present paper discusses models of Configural Frequency Analysis (CFA). For most models of CFA maximum likelihood estimators are given. For all of these models least squares estimators are also given. These estimators are equivalent to each other if quasiparametric conditions prevail. Using the second approach, the general linear model can be used to systematize CFA models. Numerical examples are given, using both artificial and psychiatric data.  相似文献   

10.
Gaggiotti OE 《Molecular ecology》2010,19(21):4586-4588
Ever since the introduction of allozymes in the 1960s, evolutionary biologists and ecologists have continued to search for more powerful molecular markers to estimate important parameters such as effective population size and migration rates and to make inferences about the demographic history of populations, the relationships between individuals and the genetic architecture of phenotypic variation (Bensch & Akesson 2005; Bonin et al. 2007). Choosing a marker requires a thorough consideration of the trade-offs associated with the different techniques and the type of data obtained from them. Some markers can be very informative but require substantial amounts of start-up time (e.g. microsatellites), while others require very little time but are much less polymorphic. Amplified fragment length polymorphism (AFLP) is a firmly established molecular marker technique that falls in this latter category. AFLPs are widely distributed throughout the genome and can be used on organisms for which there is no a priori sequence information (Meudt & Clarke 2007). These properties together with their moderate cost and short start-up time have made them the method of choice for many molecular ecology studies of wild species (Bensch & Akesson 2005). However, they have a major disadvantage, they are dominant. This represents a very important limitation because many statistical genetics methods appropriate for molecular ecology studies require the use of codominant markers. In this issue, Foll et al. (2010) present an innovative hierarchical Bayesian method that overcomes this limitation. The proposed approach represents a comprehensive statistical treatment of the fluorescence of AFLP bands and leads to accurate inferences about the genetic structure of natural populations. Besides allowing a quasi-codominant treatment of AFLPs, this new method also solves the difficult problems posed by subjectivity in the scoring of AFLP bands.  相似文献   

11.
A priori information or valuable qualitative knowledge can be incorporated explicitly to describe enzyme kinetics making use of fuzzy-logic models. Although restricted to linear relationships, it is shown that fuzzy-logic augmented models are not only able to capture non-linear features of enzyme kinetics but also allow the proper mathematical treatment of metabolic control analysis. The explicit incorporation of valuable qualitative knowledge is crucial, particularly when handling data estimated from in vivo kinetics studies, since this experimental information is scarce and usually contains measurement errors. Therefore, data-driven techniques, such as the one presented in this work, form a serious alternative to established kinetics approaches.  相似文献   

12.
This study establishes that the cellular automata models developed in an earlier article capture the essential features of the proliferation process for anchorage-dependent contact-inhibited cells. Model predictions are in excellent agreement with experimental data obtained with bovine pulmonary artery endothelial cells. The models are particularly suitable for predictive purposes since they have no adjustable parameters. All model parameters can be easily obtained from a priori measurements. Our studies also show that proliferation rates are very sensitive to the spatial distributions of seed cells. The adverse effects of seeding heterogeneities become more pronounced as a cell population approaches confluency and they should be accounted for in experimental studies attempting to assess the response of cells to external stimuli.  相似文献   

13.
Increasing locations are often accompanied by an increase in variability. In this case apparent heteroscedasticity can indicate that there are treatment effects and it is appropriate to consider an alternative involving differences in location as well as in scale. As a location‐scale test the sum of a location and a scale test statistic can be used. However, the power can be raised through weighting the sum. In order to select values for this weighting an adaptive design with an interim analysis is proposed: The data of the first stage are used to calculate the weights and with the second stage's data a weighted location‐scale test is carried out. The p‐values of the two stages are combined through Fisher's combination test. With a Lepage‐type location‐scale test it is illustrated that the resultant adaptive test can be more powerful than the ‘optimum’ test with no interim analysis. The principle to calculate weights, which cannot be reasonably chosen a priori, with the data of the first stage may be useful for other tests which utilize weighted statistics, too. Furthermore, the proposed test is illustrated with an example from experimental ecology.  相似文献   

14.
MOTIVATION: 2D fluorescence spectra provide information from intracellular compounds. Fluorophores like trytophan, tyrosine and phenylalanin as well as NADH and flavins make the corresponding measurement systems very important for bioprocess supervision and control. The evaluation is usually based on chemometric modelling using for their calibration procedure off-line measurements of the desired process variables. Due to the data driven approach lots of off-line measurements are required. Here a methodology is presented, which enables to perform a calibration procedure of chemometric models without any further measurement. RESULTS: The necessary information for the calibration procedure is provided by means of the a priori knowledge about the process, i.e. a mathematical model, whose model parameters are estimated during the calibration procedure, as well as the fact that the substrate should be consumed at the end of the process run. The new methodology for chemometric calibration is applied for a batch cultivation of aerobically grown S. cerevisiae on the glucose Schatzmann medium. As will be presented the chemometric models, which are determined by this method, can be used for prediction during new process runs. AVAILABILITY: The MATHLAB routine is free available on request from the authors.  相似文献   

15.
Codon substitution models have traditionally been parametric Markov models, but recently, empirical and semiempirical models also have been proposed. Parametric codon models are typically based on 61×61 rate matrices that are derived from a small number of parameters. These parameters are rooted in experience and theoretical considerations and generally show good performance but are still relatively arbitrary. We have previously used principal component analysis (PCA) on data obtained from mammalian sequence alignments to empirically identify the most relevant parameters for codon substitution models, thereby confirming some commonly used parameters but also suggesting new ones. Here, we present a new semiempirical codon substitution model that is directly based on those PCA results. The substitution rate matrix is constructed from linear combinations of the first few (the most important) principal components with the coefficients being free model parameters. Thus, the model is not only based on empirical rates but also uses the empirically determined most relevant parameters for a codon model to adjust to the particularities of individual data sets. In comparisons against established parametric and semiempirical models, the new model consistently achieves the highest likelihood values when applied to sequences of vertebrates, which include the taxonomic class where the model was trained on.  相似文献   

16.
Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that aim to recommend effective treatments for individual patients according to patient information history. DTRs can be estimated from models which include interactions between treatment and a (typically small) number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected, it can be difficult to know which prognostic factors might be relevant in the treatment rule. Therefore, a more data-driven approach to select these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propose a variable selection method for DTR estimation using penalized dynamic weighted least squares. Our method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been selected. We show our method has both the double robustness property and the oracle property theoretically; and the newly proposed method compares favorably with other variable selection approaches in numerical studies. We further illustrate the proposed method on data from the Sequenced Treatment Alternatives to Relieve Depression study.  相似文献   

17.
A new method is presented for estimating the parameters of two different models of a joint. The two models are: (1) A rotational joint with a fixed axis of rotation, also referred to as a hinge joint and (2) a ball and socket model, corresponding to a spherical joint. Given the motion of a set of markers, it is shown how the parameters can be estimated, utilizing the whole data set. The parameters are estimated from motion data by minimizing two objective functions. The method does not assume a rigid body motion, but only that each marker rotates around the same fixed axis of rotation or center of rotation. Simulation results indicate that in situations where the rigid body assumption is valid and when measurement noise is present, the proposed method is inferior to methods that utilize the rigid body assumption. However, when there are large skin movement artefacts, simulation results show the proposed method to be more robust.  相似文献   

18.
Economic history shows a large number of boom-bust cycles, with the U.S. real estate market as one of the latest examples. Classical economic models have not been able to provide a full explanation for this type of market dynamics. Therefore, we analyze home prices in the U.S. using an alternative approach, a multi-agent complex system. Instead of the classical assumptions of agent rationality and market efficiency, agents in the model are heterogeneous, adaptive, and boundedly rational. We estimate the multi-agent system with historical house prices for the U.S. market. The model fits the data well and a deterministic version of the model can endogenously produce boom-and-bust cycles on the basis of the estimated coefficients. This implies that trading between agents themselves can create major price swings in absence of fundamental news.  相似文献   

19.
Configural frequency analysis (CFA) is a widely used method for the identification of types and syndromes in contingency tables. However, the type model of CFA shows some major deficiencies. In this paper, we propose an alternative modeling of types eliminating the shortcomings of CFA. Basically, a type is modeled as a combination of traits or symptoms that deviates from the pattern of association holding true for the complementary configurations of the contingency table. The new approach is formulated in terms of a log-linear model. It is shown that parameter estimation can be performed with methods known from the analysis of incomplete contingency tables. Test procedures for confirmatory analysis and methods for exploratory search for type configurations are developed. We illustrate the methodology with two practical examples.  相似文献   

20.
The choice of a probabilistic model to describe sequence evolution can and should be justified. Underfitting the data through the use of overly simplistic models may miss out on interesting phenomena and lead to incorrect inferences. Overfitting the data with models that are too complex may ascribe biological meaning to statistical artifacts and result in falsely significant findings. We describe a likelihood-based approach for evolutionary model selection. The procedure employs a genetic algorithm (GA) to quickly explore a combinatorially large set of all possible time-reversible Markov models with a fixed number of substitution rates. When applied to stem RNA data subject to well-understood evolutionary forces, the models found by the GA 1) capture the expected overall rate patterns a priori; 2) fit the data better than the best available models based on a priori assumptions, suggesting subtle substitution patterns not previously recognized; 3) cannot be rejected in favor of the general reversible model, implying that the evolution of stem RNA sequences can be explained well with only a few substitution rate parameters; and 4) perform well on simulated data, both in terms of goodness of fit and the ability to estimate evolutionary rates. We also investigate the utility of several distance measures for comparing and contrasting inferred evolutionary models. Using widely available small computer clusters, our approach allows, for the first time, to evaluate the performance of existing RNA evolutionary models by comparing them with a large pool of candidate models and to validate common modeling assumptions. In addition, the new method provides the foundation for rigorous selection and comparison of substitution models for other types of sequence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号