首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Flowers frequently receive both self (S) and outcross (OC) pollen, but S pollen often sires proportionally fewer seeds. Failure of S pollen can reflect evolved mechanisms that promote outcrossing and/or inbreeding depression expressed during seed development. The relative importance of these two processes was investigated in Aquilegia caerulea, a self-compatible perennial herb. In the field I performed single-donor (S or OC) and mixed-donor (S plus OC) pollinations to compare the relative success of both pollen types at various stages from pollen germination to seed maturity. Single-donor S pollinations produced significantly fewer and lighter seeds (x decrease = 12% and 3%, respectively) than OC pollinations. Abortion rates differed by an average of 38% whereas fertilization rates differed by only 5%, indicating that most differences in seed number arose postzygotically. This suggests that inbreeding depression was responsible for most failure of S pollen. One prezygotic effect measured was that 10% fewer S than OC pollen tubes reached ovaries after 42 hr, suggesting S pollen might fertilize proportionately fewer ovules after mixed pollination. Using allozyme markers, I found mixed-donor pollinations produced significantly more and heavier outcrossed than selfed seeds. However, the proportion of selfed seed, fertilized ovules, and aborted seeds for mixed-donor fruits were each predictable from pollen performance in single-donor fruits, suggesting that differential paternity is best explained by inbreeding depression during seed development. Even given these similarities between mixed- and single-donor fruits in the relative performance of S and OC pollen, both individual seed weight and seed set were significantly higher in multiply-sired fruits.  相似文献   

2.
Despite numerous adaptive scenarios concerning the evolution of plant life-history phenologies few studies have examined the heritable basis for and genetic correlations among these phenologies. Documentation of genetic variation for and covariation among reproductive phenologies is important because it is this variation/covariation that will determine the potential for response to evolutionary forces. To address this problem, I conducted a breeding experiment to determine narrow-sense heritabilities for and genetic correlations among the phenologies of life-history events and plant size in Chamaecristafasciculata, a temperate summer annual plant species. Paternal families showed no evidence of heritable variation for two estimates of plant size, six measures of reproductive phenology or two fitness components. Similarly, paternal estimates of genetic correlations among these traits were low or zero. In contrast, maternal estimates of heritability suggested the influence of maternal parent on one estimate of plant size and four phenological traits. Likewise, maternal effects influenced maternal estimates of genetic correlations. These maternal effects can arise from three sources: endosperm nuclear, cytoplasmic genetic and/or maternal phenotypic. The degree to which the phenology of one life-history trait acts as a constraint on the evolution of other phenological traits depends on the source of the maternal influence in this species.  相似文献   

3.
Studies of experimental sexual selection have tested the effect of variation in the intensity of sexual selection on male investment in reproduction, particularly sperm. However, in several species, including Drosophila pseudoobscura, no sperm response to experimental evolution has occurred. Here, we take a quantitative genetics approach to examine whether genetic constraints explain the limited evolutionary response. We quantified direct and indirect genetic variation, and genetic correlations within and between the sexes, in experimental populations of D. pseudoobscura. We found that sperm number may be limited by low heritability and evolvability whereas sperm quality (length) has moderate VA and CVA but does not evolve. Likewise, the female reproductive tract, suggested to drive the evolution of sperm, did not respond to experimental sexual selection even though there was sufficient genetic variation. The lack of genetic correlations between the sexes supports the opportunity for sexual conflict over investment in sperm by males and their storage by females. Our results suggest no absolute constraint arising from a lack of direct or indirect genetic variation or patterns of genetic covariation. These patterns show why responses to experimental evolution are hard to predict, and why research on genetic variation underlying interacting reproductive traits is needed.  相似文献   

4.
A growing body of evidence indicates that phenotypic selection on juvenile traits of both plants and animals may be considerable. Because juvenile traits are typically subject to maternal effects and often have low heritabilities, adaptive responses to natural selection on these traits may seem unlikely. To determine the potential for evolutionary response to selection on juvenile traits of Nemophila menziesii (Hydrophyllaceae), we conducted two quantitative genetic studies. A reciprocal factorial cross, involving 16 parents and 1960 progeny, demonstrated a significant maternal component of variance in seed mass and additive genetic component of variance in germination time. This experiment also suggested that interaction between parents, though small, provides highly significant contributions to the variance of both traits. Such a parental interaction could arise by diverse mechanisms, including dependence of nuclear gene expression on cytoplasmic genotype, but the design of this experiment could not distinguish this from other possible causes, such as effects on progeny phenotype of interaction between the environmental conditions of both parents. The second experiment, spanning three generations with over 11,000 observations, was designed for investigation of the additive genetic variance in maternal effect, assessment of paternal effects, as well as further partitioning of the parental interaction identified in the reciprocal factorial experiment. It yielded no consistent evidence of paternal effects on seed mass, nor of parental interactions. Our inference of such interaction effects from the first experiment was evidently an artifact of failing to account for the substantial variance among fruits within crosses. The maternal effect was found to have a large additive genetic component, accounting for at least 20% of the variation in individual seed mass. This result suggests that there is appreciable potential for response to selection on seed mass through evolution of the maternal effect. We discuss aspects that may nevertheless limit response to individual selection on seed mass, including trade-offs between the size of individual seeds and germination time and between the number of seeds a maternal plant can mature and their mean size.  相似文献   

5.
The expected effects of breeding system on quantitative genetic variation under various models for the maintenance of such variation are examined, with particular emphasis on the contrast between randomly mating and highly self-fertilizing populations. Estimates of quantitative genetic parameters from plant populations are reviewed. There is some evidence for reduced within-population genetic variance in highly inbreeding populations, compared with outbreeders, but more empirical work appears necessary. Although the estimate of the magnitude of the effect of breeding system is subject to considerable error, the reduction in genetic variance in inbreeding populations appears greater than expected if the variation were maintained by overdominance, or if it were due to neutral mutations. It is more consistent with models involving mutation-selection balance, although a rather larger reduction in genetic variance is estimated than is expected theoretically. We discuss some possible reasons for the lower level of genetic variance in selfers than is predicted by such models.  相似文献   

6.
Abstract Genetic variance‐covariance structures (G), describing genetic constraints on microevolutionary changes of populations, have a central role in the current theories of life‐history evolution. However, the evolution of Gs in natural environments has been poorly documented. Resource quality and quantity for many animals and plants vary seasonally, which may shape genetic architectures of their life histories. In the mountain birch‐insect herbivore community, leaf quality of birch for insect herbivores declines profoundly during both leaf growth and senescence, but remains stable during midsummer. Using six sawfly species specialized on the mountain birch foliage, we tested the ways in which the seasonal variation in foliage quality of birch is related to the genetic architectures of larval development time and body size. In the species consuming mature birch leaves of stable quality, that is, without diet‐imposed time constraints for development time, long development led to high body mass. This was revealed by the strongly positive phenotypic and genetic correlations between the traits. In the species consuming growing or senescing leaves, on the other hand, the rapidly deteriorating leaf quality prevented the larvae from gaining high body mass after long development. In these species, the phenotypic and genetic correlations between development time and final mass were negative or zero. In the early‐summer species with strong selection for rapid development, genetic variation in development time was low. These results show that the intuitively obvious positive genetic relationship between development time and final body mass is a probable outcome only when the constraints for long development are relaxed. Our study provides the first example of a modification in guild‐wide patterns in the genetic architectures brought about by seasonal variation in resource quality.  相似文献   

7.
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection.  相似文献   

8.
I assessed the relationship between the level of inbreeding, F, and fitness, and the effects of nonmaternal and maternal components of inbreeding on fitness in Phacelia dubia. I conducted two generations of controlled crosses and tested the performance of the F2 progeny in field and artificial conditions covering the whole life cycle. Inbreeding significantly decreased the individual contribution of seeds to the next generation in the field, but this decrease apparently is not enough to explain the maintenance of gynodioecy. The inbred progeny contributes significantly to the population genetic structure of P. dubia. Fitness estimates and fitness components tended to decrease, usually monotonically, with F. However, nonmonotonic relationships were found in male fitness components and, in some families, in fitness estimates, seed production per fruit, and establishment. Most of the inbreeding depression takes place at the level of seed establishment in the field, but, in artificial conditions the effects of inbreeding were similar at fecundity and establishment. I studied maternal and nonmaternal components of inbreeding by testing the effects of the relatedness of maternal grandparents and parents on the performance of the progeny. Both components affected fitness. Inbreeding depression was conditioned by the level of inbreeding of the maternal plant, but this interaction varied at different fitness components. Also, the magnitude and even the direction of the relationship between fitness and F changed as a result of the combined effects of maternal and nonmaternal components of inbreeding. Such interactions can render convex or concave fitness functions, giving in the latter case the appearance of a false purging. Maternal effects of inbreeding can result from several processes: maternal investment perhaps with serial adjustments during seed development, purging of recessive deleterious genes, and nucleocytoplasmic interactions. These results illustrate the importance of maternal effects of inbreeding, and the complex effects of inbreeding on fitness. A full understanding of the fitness consequences of inbreeding and, therefore, their potential implications in the evolution of breeding systems, should take into account male and female components as well as transgenerational effects in the context of the particular environment in which fitness is evaluated.  相似文献   

9.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   

10.
We tested the hypothesis that locomotor speed and endurance show a negative genetic correlation using a genetically variable laboratory strain of house mice (Hsd:ICR: Mus domesticus). A negative genetic correlation would qualify as an evolutionary “constraint,” because both aspects of locomotor performance are generally expected to be under positive directional selection in wild populations. We also tested whether speed or endurance showed any genetic correlation with body mass. For all traits, residuals from multiple regression equations were computed to remove effects of possible confounding variables such as age at testing, measurement block, observer, and sex. Estimates of quantitative genetic parameters were then obtained using Shaw's (1987) restricted maximum-likelihood programs, modified to account for our breeding design, which incorporated cross-fostering. Both speed and endurance were measured on two consecutive trial days, and both were repeatable. We initially analyzed performances on each trial day and the maximal value. For endurance, the three estimates of narrow-sense heritabilities ranged from 0.17 to 0.33 (full ADCE model), and some were statistically significantly different from zero using likelihood ratio tests. The heritability estimate for sprint speed measured on trial day 1 was 0.17, but negative for all other measures. Moreover, the additive genetic covariance between speeds measured on the two days was near zero, indicating that the two measures are to some extent different traits. The additive genetic covariance between speed on trial day 1 and any of the four measures of endurance was negative, large, and always statistically significant. None of the measures of speed or endurance was significantly genetically correlated with body mass. Thus, we predict that artificial selection for increased locomotor speed in these mice would result in a decrease in endurance, but no change in body mass. Such experiments could lead to a better understanding of the physiological mechanisms leading to trade-offs in aspects of locomotor abilities.  相似文献   

11.
This paper examines several aspects of the expression of inbreeding depression in an outcrossing, obligately biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). The amount of inbreeding depression detected was small during the first year of life but increased with age and had significant effects on adult size and reproductive traits. The lack of significant inbreeding depression during early growth is likely due to the overriding influence of maternal environmental effects on seed size and seedling growth. However, as maternal effects decreased with age, the seedling's own genotype became a more important determinant of its fate. To examine whether the expression of inbreeding depression was sensitive to ecological conditions, selfed and outcrossed seedlings were grown alone or with other H. appendiculatum seedlings. No inbreeding depression was detected in the plants grown alone. In contrast, under competitive conditions, outcrossed seedlings were significantly larger than selfed seedlings by the end of the first growing season. To address whether parental mating history influences the amount of inbreeding depression expressed, I examined the consequences of two successive generations of selfing on seed set and seed weight. The amount of inbreeding depression increased following the second generation of selfing. In the first generation, seed set and seed weight differed by less than 5% between selfed and outcrossed progeny. However, both traits were 15% greater for outcrossed plants after two generations. These results indicate that the alleles responsible for the reductions in these traits were not purged and suggest the action of multiple loci with deleterious effects.  相似文献   

12.
Reciprocal embryo transfer experiments show that skeletal dimensions in adult mice are significantly influenced by the genotype of the female providing the uterine environment in which they were raised. Embryo transfers among C3HeB/FeJ, SWR/J, and the C3SWF, hybrid strain (C3H females x SWR males) permit separation of uterine maternal genotype effects from effects arising from the progeny's own genotype. Many different aspects of adult skeletal form are significantly influenced by uterine genotype and, in some instances, the pattern of these effects correlates with events during skeletal embryology. Analyses involving the highly heterozygous C3SWF1 strain demonstrate the existence of significant dominance in maternal genes affecting skeletal development in the progeny. Further, there is a large skeletal effect due to progeny heterosis. Uterine Utter size can be manipulated as a nonheritable component of variability in embryo transfer experiments, and it has a large and systemic effect on skeletal growth and morphogenesis that persists in adult mice. Heritable uterine maternal effects are epigenetic interactions during development that can be incorporated into models of evolutionary change to provide a more complete picture of the causal agents producing morphological change.  相似文献   

13.
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species.  相似文献   

14.
Events that follow pollination, such as pollen-tube growth and seed maturation, comprise an important phase of angiosperm reproduction. Differential success during this “postpollination” phase may represent phenotypic selection, including sexual selection, or interaction between parents caused, for example, by their genetic similarity. By providing a detailed partitioning of variance in success, diallel crossing designs offer great potential to determine which processes are occurring and their relative magnitudes. We performed three partial diallels with the montane herb Ipomopsis aggregata, using a large sample of parental plants (69 total). Embedded in the designs were crossing-distance treatments of 1 m, 10 m, and 100 m, reflecting a range of parental genetic similarity. We partitioned phenotypic variance in seed set per fruit into six components using restricted maximum-likelihood (REML) analysis. For one diallel, we also partitioned variance in seed mass into five components, and estimated two components of covariance between seed set and mass. Variance caused by maternal effects (Vmat) comprised 12%–35% of total variance in seed set and 62% of variance in seed mass, and there was a significant negative environmental covariance between seed set and seed mass. Parental interaction made no detectable contribution to phenotypic variance in either of our measures of postpollination success, although crossing distance did contribute slightly but significantly to fit of the model in some cases. Finally, there was no detectable paternal variance (Vpat) in seed set or seed mass. These results are in keeping with reports from other studies of natural plant populations. The finding of little or no paternal variance in particular suggests little scope for postpollination sexual selection through the male function of cosexual plants such as I. aggregata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号