首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glucose regulated proteins (GRPs) are major structural components of the endoplasmic reticulum (ER) and are involved in the import, folding, and processing of ER proteins. Expression of the glucose regulated proteins (GRP78 and GRP94) is greatly increased after cells are exposed to stress agents (including A23187 and tunicamycin) which inhibit ER function. Here, we demonstrate that three novel inhibitors of ER function, thapsigargin (which inhibits the ER Ca(2+)-ATPase), brefeldin A (an inhibitor of vesicle transport between the ER and Golgi) and AIF4-, (which inhibits trimeric G-proteins), can increase the expression of both GRP78 and 94. The common characteristic shared by activators of GRP expression is that they disrupt some function of the ER. The increased levels of GRPs may be a response to the accumulation of aberrant proteins in the ER or they may be increased in response to structural/functional damage to the ER. The increased accumulation of GRP78 mRNA after exposure of cells to either thapsigargin, brefeldin A, AIF4-, A23187, or tunicamycin can be blocked by pre-incubation in cycloheximide. In contrast, accumulation of GRPs after exposure to hypoxia was independent of cycloheximide. In addition, the protein kinase inhibitor genistein blocked the thapsigargin induced accumulation of GRP78 mRNA, whereas the protein phosphatase inhibitor okadaic acid caused increased accumulation of GRP78 mRNA. The data indicates that there are at least 2 mechanisms for induced expression of GRPs, one of which involves a phosphorylation step and requires new protein synthesis (e.g., thapsigargin, A23187) and one which is independent of both these steps (hypoxia).  相似文献   

3.
4.
CYP2E1 causes oxidative stress mediated cell death; the latter is one mechanism for endoplasmic reticulum (ER) stress in the cell. Unfolded proteins accumulate during ER stress and ER resident proteins GRP78 and GRP94 protect cells against ER dysfunction. We examined the possible role of GRP78 and GRP94 as protective factors against CYP2E1-mediated toxicity in HepG2 cells expressing CYP2E1 (E47 cells). E47 cells expressed high levels of CYP2E1 protein and catalytic activity which is associated with increased ROS generation, lipid peroxidation and the elevated presence of ubiquinated and aggregated proteins as compared to control HepG2 C34 cells which do not express CYP2E1. The mRNA and protein expression of GRP78 and GRP94 were decreased in E47 cells compared to the C34 cells, which may explain the accumulation of ubiquinated and aggregated proteins. Expression of these GRP proteins was induced with the ER stress agent thapsigargin in E47 cells, and E47 cells were more resistant to the toxicity caused by thapsigargin and calcimycin, possibly due to this upregulation and also because of the high expression of GSH and antioxidant enzymes in E47 cells. Antioxidants such as trolox and N-acetylcysteine increased GRP78 and GRP94 levels in the E47 cells, suggesting that CYP2E1- derived oxidant stress was responsible for down regulation of these GRPs in the E47 cells. Thapsigargin mediated toxicity was decreased in cells treated with the antioxidant trolox indicating a role for oxidative stress in this toxicity. These results suggest that CYP2E1 mediated oxidative stress downregulates the expression of GRP proteins in HepG2 cells and oxidative stress is an important mechanism in causing ER dysfunction in these cells.  相似文献   

5.
6.
Ischemic stress of cells within solid tumors arises from inadequate perfusion of regions of the tumor and results in microenvironments which are hypoxic and deficient in nutrient delivery and waste product removal. Stressed cells within these microenvironments show growth inhibition and synthesize unique sets of proteins referred to as glucose and oxygen regulated proteins (GRPs and ORPs respectively). The commonality of proteins induced by glucose-starvation and hypoxia has not been proven. To this end, ORPs were induced in Chinese hamster ovary cells in the presence of high glucose concentration in the media and ORP 80 isolated from two dimension gels. Eleven tryptic peptides of the 80 kDa ORP were sequenced and found to be identical to GRP 78 sequences. The data demonstrate that GRP 78 and ORP 80 have the same primary amino acid sequence and suggest that glucose-starvation and hypoxia can induce the same cellular responses.  相似文献   

7.
GRP78 is a resident protein of the endoplasmic reticulum (ER) and a member of the glucose regulated protein (GRP) family. Many secretion incompetent proteins are found in stable association with GRP78 and are retained in the ER. Some proteins which are destined for secretion transiently associate with GRP78. To further increase our understanding of the role of GRP78 in secretion, we have stably overexpressed GRP78 in Chinese hamster ovary (CHO) cells and examined the effect on protein secretion and the stress response. GRP78 overexpressing cells treated with tunicamycin or A23187 exhibited a reduced induction of endogenous GRP78 and GRP94 mRNAs compared to wild-type CHO cells. This suggests that GRP78 overexpression either alleviates the stress or is directly involved in signaling stress-induced expression of GRPs. Transient expression of secreted proteins was used to measure secretion efficiency in the GRP78 overexpressing cells. Secretion of von Willebrand factor and a mutant form of factor VIII, two proteins which transiently associate with GRP78, was reduced by GRP78 overexpression. In contrast, secretion of M-CSF, which was not detected in association with GRP78, was unaffected. This indicates that elevated levels of GRP78 may increase stable association and decrease the secretion efficiency of proteins which normally transiently associate with GRP78. These results indicate that one function of GRP78 is selective protein retention in the ER.  相似文献   

8.
Induction of glucose-regulated proteins in Xenopus laevis A6 cells   总被引:1,自引:0,他引:1  
We have characterized the induction of glucose-regulated proteins (GRPs) in Xenopus laevis A6 cells, a kidney epithelial cell line. Exposure of A6 cells to medium in which 2-deoxyglucose replaced galactose resulted in enhanced synthesis of two proteins at 78 and 98 kd. The 78 kd protein was determined by two-dimensional PAGE to consist of two isoelectric variants with pls of 5.3 and 5.2 whereas the 98 kd protein resolved into a single spot with a pl of 5.1. The 78 kd protein cross-reacted with antiserum against chicken GRP78 (glucose-regulated protein), suggesting that the Xenopus protein shares homology with a previously characterized GRP. This was supported by the finding that a rat GRP78 probe hybridized with a 2-deoxyglucose-inducible mRNA. Synthesis of the two proteins was also induced by tunicamycin, 2-deoxygalactose, and dithiothreitol. However, the GRPs were not induced by glucosamine or calcium ionophore A23187 at concentrations and exposure periods that have previously been shown to elicit a GRP response in mammalian and avian cells. Enhanced synthesis of the two GRPs by 2-deoxyglucose was transient, reaching maximal levels by 12-24 h and decreasing to near control levels by 48 h. Removal of the stress at the point of peak synthesis resulted in decreased synthesis of both proteins within 6 h and a return to control levels within 24 h of recovery. These data suggest that Xenopus cells have a GRP response that is similar, but not identical, to that found in mammalian cells.  相似文献   

9.
10.
Expression of the glucose-regulated proteins (GRPs), GRP78 and GRP94, is induced by a variety of stress conditions including treatment of cells with tunicamycin or the calcium ionophore A23187. The stimulus for induction of these resident endoplasmic reticulum (ER) proteins appears to be accumulation of misfolded or underglycosylated protein within the ER. We have studied the induction of mRNAs encoding two other resident ER proteins, ERp72 and protein disulfide isomerase (PDI), during the stress response in Chinese hamster ovary cells. ERp72 shares amino acid sequence homology with PDI within the presumed catalytic active sites. ERp72 mRNA and, to a lesser degree, PDI mRNA were induced by treatment of Chinese hamster ovary cells with tunicamycin or A23187. These results identify ERp72 as a member of the GRP family. Stable high level overproduction of ERp72 or PDI from recombinant expression vectors did not alter the constitutive or induced expression of other GRPs. High level overexpression resulted in secretion of the overproduced protein specifically but not other resident ER proteins. This suggests that the ER retention mechanism is mediated by more specific interactions than just KDEL sequence recognition.  相似文献   

11.
Glucose-related proteins (GRPs) are ubiquitously expressed in the endoplasmic reticulum and assist in protein folding and assembly, consequently considered to be molecular chaperones. GRP78 and GRP94 expression was induced by glucose starvation and up-regulated in samples taken from several different malignant tissues. To clarify the roles of both molecules in tumorigenesis and progression of colorectal carcinomas, immunohistochemistry (IHC) was performed on tissue microarrays containing colorectal carcinomas, adenomas and the non-neoplastic mucosa (NNM) using antibodies against GRP78 and GRP94. Their expression was correlated with the clinicopathological parameters of carcinomas. Both proteins were also studied in colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) by IHC and Western blot. There was a gradually increased GRP78 expression from colorectal NNMs, carcinomas, to low-grade and high-grade adenomas (P<0.05), while up-regulated GRP94 expression from NNM, low-grade adenoma, high-grade adenoma, to carcinoma (P<0.05). The expression was similar in all the carcinoma cell lines. GRP78 expression was negatively correlated with lymphatic invasion or low GRP94 expression of the carcinomas (P<0.05), while there was no correlation of GRP94 expression with other parameters of carcinomas (P>0.05). Multivariate analysis showed that venous invasion, lymph node metastasis and UICC staging (P<0.05), but not age, sex, tumor size, differentiation, depth of invasion, lymphatic invasion, GRP78 and GRP94 expression (P>0.05), were independent prognostic factors for carcinomas. It is suggested that up-regulated expression of GRP78 and GRP94 could possibly be involved in the pathogenesis of colorectal carcinomas.  相似文献   

12.
13.
葡萄糖调节蛋白94又叫做内质网蛋白99,是一种内质网分子伴侣蛋白,与HSP90有50%的同源性。GRP94蛋白可以和Ca2+结合具有蛋白伴侣特性,能协助新合成的多肽转位、折叠、寡聚体的组装、降解,抑制错误折叠蛋白的分泌;GRP94还具有抗原呈递的作用,可以作为肿瘤细胞的伴侣蛋白,参与肿瘤细胞的新陈代谢,保护肿瘤细胞免受有害因素的侵害。GRP94可能与人类多种肿瘤的发生有关,其表达的增高可能是肿瘤发生发展的一个重要因素。GRP94在肿瘤组织中高表达提示相关研究者,应用基因手段抑制GRP94的表达可能能够抑制肿瘤细胞的生长、侵袭和转移、增加肿瘤细胞对化疗药物的敏感性等,并且利用GRP94作为一种新的肿瘤治疗的靶分子或介质可能为肿瘤的基因治疗带来更广泛的应用前景。  相似文献   

14.
Shao L  Sun X  Xu L  Young LT  Wang JF 《Life sciences》2006,78(12):1317-1323
The mood stabilizing drug lithium is a highly effective treatment for bipolar disorder. Previous studies in our laboratory found that chronic treatment with the mood stabilizing drug valproate in rat brain increased the expression of endoplasmic reticulum (ER) stress proteins GRP78, GRP94 and calreticulin. We report here that in primary cultured rat cerebral cortical cells, expression of GRP78, GRP94 and calreticulin are increased not only by valproate, but also by lithium after chronic treatment for 1 week at therapeutically relevant concentrations. However, two other mood stabilizing drugs carbamazepine and lamotrigine had no effect on expression of GRP78, GRP94 or calreticulin. Chronic treatment with lithium for 1 week increased both mRNA and protein levels of ER stress proteins. In contrast to a classic GRP78 inducer thapsigargin, an inhibitor of the ER Ca2+ -ATPase, chronic treatment with lithium or valproate for 1 week modestly increased GRP78 expression in neuronal cells, had no effect on basal intracellular free Ca2+ concentration and does not induce cell death. These results indicate that lithium and valproate may increase expression of GRP78, GRP94 and calreticulin in primary cultured rat cerebral cortical cells without causing cell damage. These results also suggest that the mechanism of GRP78 increase induced by lithium and valproate may be different from that of thapsigargin.  相似文献   

15.
A large number of correlative studies have established that the activation of the unfolded protein response (UPR) alters the cell's sensitivity to chemotherapeutic agents. Although the induction of the glucose-regulated proteins (GRPs) is commonly used as an indicator for the UPR, the direct role of the GRPs in conferring resistance to DNA damaging agents has not been proven. We report here that without the use of endoplasmic reticulum (ER) stress inducers, specific overexpression of GRP78 results in reduced apoptosis and higher colony survival when challenged with topoisomerase II inhibitors, etoposide and doxorubicin, and topoisomerase I inhibitor, camptothecin. While investigating the mechanism for the GRP78 protective effect against etoposide-induced cell death, we discovered that in contrast to the UPR, GRP78 overexpression does not result in G1 arrest or depletion of topoisomerase II. Caspase-7, an executor caspase that is associated with the ER, is activated by etoposide. We show here that specific expression of GRP78 blocks caspase-7 activation by etoposide both in vivo and in vitro, and this effect can be reversed by addition of dATP in a cell-free system. Recently, it was reported that ectopically expressed GRP78 and caspases-7 and -12 form a complex, thus coupling ER stress to the cell death program. However, the mechanism of how GRP78, a presumably ER lumen protein, can regulate cytosolic effectors of apoptosis is not known. Here we provide evidence that a subpopulation of GRP78 can exist as an ER transmembrane protein, as well as co-localize with caspase-7, as confirmed by fluorescence microscopy. Co-immunoprecipitation studies further reveal endogenous GRP78 constitutively associates with procaspase-7 but not with procaspase-3. Lastly, a GRP78 mutant deleted of its ATP binding domain fails to bind procaspase-7 and loses its protective effect against etoposide-induced apoptosis.  相似文献   

16.
17.
A high percentage of oesophageal adenocarcinomas show an aggressive clinical behaviour with a significant resistance to chemotherapy. Heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) are molecular chaperones that play an important role in tumour biology. Recently, novel therapeutic approaches targeting HSP90/GRP94 have been introduced for treating cancer. We performed a comprehensive investigation of HSP and GRP expression including HSP27, phosphorylated (p)-HSP27(Ser15), p-HSP27(Ser78), p-HSP27(Ser82), HSP60, HSP70, HSP90, GRP78 and GRP94 in 92 primary resected oesophageal adenocarcinomas by using reverse phase protein arrays (RPPA), immunohistochemistry (IHC) and real-time quantitative RT-PCR (qPCR). Results were correlated with pathologic features and survival. HSP/GRP protein and mRNA expression was detected in all tumours at various levels. Unsupervised hierarchical clustering showed two distinct groups of tumours with specific protein expression patterns: The hallmark of the first group was a high expression of p-HSP27(Ser15, Ser78, Ser82) and low expression of GRP78, GRP94 and HSP60. The second group showed the inverse pattern with low p-HSP27 and high GRP78, GRP94 and HSP60 expression. The clinical outcome for patients from the first group was significantly improved compared to patients from the second group, both in univariate analysis (p = 0.015) and multivariate analysis (p = 0.029). Interestingly, these two groups could not be distinguished by immunohistochemistry or qPCR analysis. In summary, two distinct and prognostic relevant HSP/GRP protein expression patterns in adenocarcinomas of the oesophagus were detected by RPPA. Our approach may be helpful for identifying candidates for specific HSP/GRP-targeted therapies.  相似文献   

18.
19.
Animal cells respond to calcium ionophore (A23187) treatment with the coordinate induction of a set of genes encoding proteins identical to the glucose-regulated proteins (GRPs). By monitoring the intracellular free calcium with the fluorescent indicator fura-2 while employing both intracellular and extracellular calcium buffers, we demonstrated that A23187 can induce the GRP94 and GRP78 genes without an increase in cytoplasmic calcium ([Ca2+]i). Induction of GRP mRNA during glucose starvation was also independent of [Ca2+]i. Instead, gene induction by A23187 was closely correlated with the depletion of intracellular calcium stores. We conclude that perturbations of sequestered calcium ions by A23187 can serve as a stimulus for gene expression.  相似文献   

20.
Induction of glucose-regulated proteins (GRPs) is a ubiquitous intracellular response to stresses such as hypoxia, glucose starvation and acidosis. The induction of GRPs offers some protection against these stresses in vitro, but the specific role of GRPs in vivo remains unclear. Hibernating bats present a good in vivo model to address this question. The bats must overcome local high oxygen demand in tissue by severe metabolic stress during arousal thermogenesis. We used brain tissue of a temperate bat Rhinolopus ferrumequinum to investigate GRP induction by high metabolic oxygen demand and to identify associated signaling molecules. We found that during 30 min of arousal, oxygen consumption increased from nearly zero to 11.9/kg/h, which was about 8.7-fold higher than its active resting metabolic rate. During this time, body temperature rose from 7 degrees C to 35 degrees C, and levels of TNF-alpha and lactate in brain tissue increased 2-2.5-fold, indicating a high risk of oxygen shortage. Concomitantly, levels of GRP75, GRP78 and GRP94 increased 1.5-1.7-fold. At the same time, c-Jun N-terminal protein kinase (JNK) activity increased 6.4-fold, and extracellular signal-regulated protein kinase (ERK) activity decreased to a similar degree (6.1-fold). p38 MAPK activity was very low and remained unchanged during arousal. In addition, survival signaling molecules protein kinase B (Akt) and protein kinase C (PKC) were activated 3- and 5-fold, respectively, during arousal. Taken together, our results showed that bat brain undergoes high oxygen demand during arousal from hibernation. Up-regulation of GRP proteins and activation of JNK, PKCgamma and Akt may be critical for neuroprotection and the survival of bats during the repeated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号