首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The amount of radiographically detectable cortical bone, as determined by measurements of the second metacarpal, was evaluated in 42 male and 45 female Guamanian Chamorros and compared with the degree of bony demineralization in U.S. Caucasians participating in the Baltimore Longitudinal Study on Aging of the Gerontology Research Center. All Chamorros were individually matched to the Caucasian participants for age, sex, and menopause status. Chamorros of both sexes showed bilateral asymmetry in bone measurements and in the amount of cortical bone. Both Chamorro and Caucasian males had longer second metacarpals and more cortical bone than females. Caucasian males, however, had longer and larger second metacarpals than Chamorro males. Despite differences in the length and total width, Chamorro and Caucasian participants generally showed no significant differences in the amount of cortical bone or percent cortical area in the second metacarpal, suggesting that larger bones may not always indicate greater cortical mass. Although cross-sectional data suggested apparent age differences in the onset and rate of bone loss between Chamorros and Caucasians, the numbers of participants were too small to allow meaningful age-by-age statistical comparisons.  相似文献   

2.
Using a variety of skeletal and dental stress indicators, an assessment of the health and disease of the indigenous inhabitants of the Mariana Islands, the Chamorro, is made. The major hypothesis to be tested is that the Chamorro were relatively healthy and that deviations from the expected, as well as inter-island variation, may reflect environmental, ecological, and cultural differences. The major skeletal series surveyed include sites on Guam (N = 247 individuals), Rota (N = 14), Tinian (N = 20), and Saipan (N = 102). The majority of the specimens are from the transitional pre-Latte (AD 1–1000) and Latte (AD 1000–1521) periods. These data derive primarily from unpublished osteological reports. The indicators of health and disease surveyed include mortality and paleodemographic data, stature, dental paleopathology, cribra orbitalia, limb bone fractures, degenerative osteoarthritis, and infectious disease (including treponemal infection). Where appropriate, tests of significance are calculated to determine the presence of any patterning in the differences observed within and between the skeletal series. Information recorded in prehistoric Hawaiians provides a standard for external comparisons. Several of the larger skeletal series surveyed have paleodemographic features that are consistent with long-term cemetery populations. Females and subadults are typically underrepresented. Most subadult deaths occur in the 2–5 year age interval. Life expectancy at birth ranges from 26.4 to 33.7 years. A healthy fertility rate is indicated for these series. The prehistoric inhabitants of the Mariana Islands were relatively tall, exceeding living Chamorros measured in the early part of the present century. The greater prevalence of developmental defects in the enamel suggests that the Chamorro were exposed to more stress than prehistoric Hawaiians. The low frequency of cribra orbitalia further indicates iron deficiency anemia was not a problem. There are generally low frequencies of dental pathology in the remains from the Mariana Islands. Betel-nut staining is relatively common in all series which may help to explain the relatively low prevalence of dental pathology. Healed limb bone fractures are rare in these skeletal series; the frequency and patterns of fractures suggest accidental injury as the main cause. Greater physical demands involving the lower back region are indicated by a high frequency of spondylolysis, or stress fracture in the lumbar vertebrae in the Chamorro. Likewise, advanced degenerative bone changes, while of low occurrence, are significantly greater in the Chamorro than Hawaiians. The prevalence of skeletal and dental indicators of stress was generally higher in the smaller islands of the Marianas chain (e.g., Rota), islands with fewer resources to buffer environmental catastrophe. Bony changes suggestive of treponemal (probably yaws) disease are common in most of these Marianas Islands skeletal series. Am J Phys Anthropol 104:315–342, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
It has been proposed that long-distance dispersal of mosses to the Hawaiian Islands rarely occurs and that the Hawaiian population of the allopolyploid peat moss Sphagnum palustre probably resulted from a single dispersal event. Here, we used microsatellites to investigate whether the Hawaiian population of the dioicous S. palustre had a single founder and to compare its genetic diversity to that found in populations of S. palustre in other regions. The genetic diversity of the Hawaiian population is comparable to that of larger population systems. Several lines of evidence, including a lack of sporophytes and an apparently restricted natural distribution, suggest that sexual reproduction is absent in the Hawaiian plants. In addition, all samples of Hawaiian S. palustre share a genetic trait rare in other populations. Time to most recent ancestor (TMRCA) analysis indicates that the Hawaiian population was probably founded 49-51 kyr ago. It appears that all Hawaiian plants of S. palustre descend from a single founder via vegetative propagation. The long-term viability of this clonal population coupled with the development of significant genetic diversity suggests that vegetative propagation in a moss does not necessarily preclude evolutionary success in the long term.  相似文献   

4.
We used sighting reports, including decades of citizen-reported Hawaiian monk seal (Neomonachus schauinslandi) sightings, to describe female breeding biology and reproductive success in the main Hawaiian Islands. We first used this data set to describe the timing of events in the female reproductive cycle. We then conducted an expert review of patterns in sighting histories to detect unobserved pupping events. Finally, we estimated the age-specific reproductive curve for female monk seals in the main Hawaiian Islands. Charting reproductive cycles showed indications of the robust condition of female monk seals in the main Hawaiian Islands; they nursed pups 12% longer than their counterparts in the Northwestern Hawaiian Islands and regained condition to molt more quickly after weaning a pup. By examining sighting histories, we were able to infer 25 unobserved pupping events that had previously gone uncounted. We accounted for additional uncertainty with a randomization procedure. After accounting for unobserved pupping events, the age-specific reproductive rate of main Hawaiian Islands monk seals exceeded 0.70 for prime aged females (8–18 years). This is the highest reproductive rate reported for any of the Hawaiian monk seal breeding sites, illustrating the important role of the main Hawaiian Islands population in Hawaiian monk seal recovery.  相似文献   

5.
The endemic Hawaiian flora offers remarkable opportunities to study the patterns of plant morphological and molecular evolution. The Hawaiian violets are a monophyletic lineage of nine taxa distributed across six main islands of the Hawaiian archipelago. To describe the evolutionary relationships, biogeography, and molecular evolution rates of the Hawaiian violets, we conducted a phylogenetic study using nuclear rDNA internal transcribed spacer sequences from specimens of each species. Parsimony, maximum likelihood (ML), and Bayesian inference reconstructions of island colonization and radiation strongly suggest that the Hawaiian violets first colonized the Maui Nui Complex, quickly radiated to Kaua'i and O'ahu, and recently dispersed to Hawai'i. The lineage consists of "wet" and "dry" clades restricted to distinct precipitation regimes. The ML and Bayesian inference reconstructions of shifts in habitat, habit, and leaf shape indicate that ecologically analogous taxa have undergone parallel evolution in leaf morphology and habit. This parallel evolution correlates with shifts to specialized habitats. Relative rate tests showed that woody and herbaceous sister species possess equal molecular evolution rates. The incongruity of molecular evolution rates in taxa on younger islands suggests that these rates may not be determined by growth form (or lifespan) alone, but may be influenced by complex dispersal events.  相似文献   

6.
The origins and times of divergence of the speciose Hawaiian Drosophilidae are examined using mtDNA sequences. The Hawaiian Drosophilidae are resolved as the sister group to the subgenus Drosophila. No one member of the subgenus Drosophila could be determined to be more closely related to the Hawaiian Drosophilidae than could any other. This result suggests that the Hawaiian Drosophilidae arose before the diversification of the subgenus Drosophila and after the divergence of the subgenus Sophophora. In light of fossil evidence, this phylogenetic scenario suggests that the Hawaiian Drosophilidae lineages are no younger than 30 Myr.  相似文献   

7.
We used mitochondrial and nuclear genetic markers to investigate population structure of common bottlenose dolphins, Tursiops truncatus, around the main Hawaiian Islands. Though broadly distributed throughout the world's oceans, bottlenose dolphins are known to form small populations in coastal waters. Recent photo‐identification data suggest the same is true in Hawaiian waters. We found genetic differentiation among (mtDNA ΦST= 0.014–0.141, microsatellite FST= 0.019–0.050) and low dispersal rates between (0.17–5.77 dispersers per generation) the main Hawaiian Island groups. Our results are consistent with movement rates estimated from photo‐identification data and suggest that each island group supports a demographically independent population. Inclusion in our analyses of samples collected near Palmyra Atoll provided evidence that the Hawaiian Islands are also occasionally visited by members of a genetically distinct, pelagic population. Two of our samples exhibited evidence of partial ancestry from Indo‐Pacific bottlenose dolphins (T. aduncus), a species not known to inhabit the Hawaiian Archipelago. Our findings have important implications for the management of Hawaiian bottlenose dolphins and raise concerns about the vulnerability to human impacts of pelagic species in island ecosystems.  相似文献   

8.
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.  相似文献   

9.
Speciation is regarded primarily as a bifurcation from an ancestral species into two distinct taxonomic units, but gene flow can create complex signals of phylogenetic relationships, especially among different loci. We evaluated several hypotheses that could account for phylogenetic discord between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) within Hawaiian duck (Anas wyvilliana), including stochastic lineage sorting, mtDNA capture and widespread genomic introgression. Our results best support the hypothesis that the contemporary Hawaiian duck is descended from an ancient hybridization event between the mallard (Anas platyrhynchos) and Laysan duck (Anas laysanensis). Whereas mtDNA clearly shows a sister relationship between Hawaiian duck and mallard, nuDNA is consistent with a genetic mosaic with nearly equal contributions from Laysan duck and mallard. In addition, coalescent analyses suggest that gene flow from either mallard or Laysan duck, depending on the predefined tree topology, is necessary to explain contemporary genetic diversity in Hawaiian ducks, and these estimates are more consistent with ancient, rather than contemporary, hybridization. Time since divergence estimates suggest that the genetic admixture event occurred around the Pleistocene–Holocene boundary, which is further supported by circumstantial evidence from the Hawaiian subfossil record. Although the extent of reproductive isolation from either putative parental taxon is not currently known, these species are phenotypically, genetically and ecologically different, and they meet primary criteria used in avian taxonomy for species designation. Thus, the available data are consistent with an admixed origin and support the hypothesis that the Hawaiian duck may represent a young hybrid species.  相似文献   

10.
The Hawaiian endemic Silene are a small group of woody or semiwoody representatives from a large, predominantly herbaceous, species-rich genus. We here investigated the origin and number of introductions of the endemic Hawaiian Silene based on phylogenetic relationships inferred from DNA sequences from both the plastid (the rps16 intron) and the nuclear (ribosomal internal transcribed sequences, ITS, and intron 23 of the RPB2 gene) genomes. Silene antirrhina, a widespread weedy American annual, is strongly supported as sister to a monophyletic group consisting of the Hawaiian Silene, indicating a single colonization event. There are no obvious morphological similarities between S. antirrhina and any of the species of Hawaiian Silene. Our results suggest an American origin for the Hawaiian endemics because that would require only a single trans-ocean dispersal. Two of the Hawaiian endemics (S. struthioloides and S. hawaiiensis) that form a subclade in the analyses have evolved woodiness after introduction to the Hawaiian Islands. Our results contribute to other recent results based on molecular phylogenetics that emphasize the American continent as a source area for the Hawaiian flora and support a striking morphological radiation and evolution of woodiness from a single introduction to the archipelago.  相似文献   

11.
The Hawaiian endemic mints constitute a major island radiation, displaying a remarkable diversity of floral, fruit, and vegetative features. Haplostachys and Phyllostegia have flowers associated with insect pollination, whereas Stenogyne has flowers typical of bird pollination. The three genera had been thought to be closely related to East Asian members of Lamioideae tribe Prasieae because of the fleshy nutlets borne by Phyllostegia and Stenogyne. We evaluated the origins of the Hawaiian mints using phylogenetic analyses of DNA sequence data from the plastid rbcL and trnL intron loci and the nuclear ribosomal 5S nontranscribed spacer. The Hawaiian genera were found to be monophyletic but deeply nested inside another lamioid genus, Stachys. In particular, they were found to be most closely related to a group of temperate North American Stachys from the Pacific coast, suggesting that the Hawaiian mints derived from a single colonization event from western North America to the Hawaiian Islands. Furthermore, Stachys, which contains amphiatlantic and transberingian clades, was found to be polyphyletic, with some species more closely related to Gomphostemma, Phlomidoschema, Prasium, and Sideritis than to other species of Stachys. Based on chromosomal evidence and our phylogenetic analyses, we hypothesize that the Hawaiian mints may be polyploid hybrids whose reticulate genomes predate the Hawaiian dispersal event and are derived from Stachys lineages with flowers exhibiting insect- vs. bird-pollination characteristics. Thus, the Hawaiian endemic mints may provide yet another insular system for the combined study of polyploidy, hybrid cladogenesis, and adaptive radiation.  相似文献   

12.
We investigated the origin of Hawaiian Pittosporum and their relationship to other South Pacific Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximum-likelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.  相似文献   

13.
Specialists studying the genus Viola have consistently allied the Hawaiian violets comprising section Nosphinium--most of which are subshrubs or treelets--with putatively primitive subshrubs in certain South American violet groups. Hawaiian violets also possess inflorescences, a floral disposition otherwise found only in other genera of the Violaceae, thus strengthening the hypothesis of a very ancient origin for the Hawaiian species. A survey of phylogenetic relationships among infrageneric groups of Viola worldwide using nuclear rDNA internal transcribed spacer (ITS) sequences revealed a dramatically different biogeographic origin for the Hawaiian violets: A monophyletic Hawaiian clade was placed in a close sister relationship with the amphi-Beringian tundra violet, V. langsdorffii s. 1., in a highly derived position. This remarkable and unforeseen relationship received strong clade support values across analyses, and monophyly of the Hawaiian lineage was further indicated by a unique 26-base-pair deletion in section Nosphinium. The high polyploid base chromosome number (n approximately equal to 40) in the Hawaiian violets relates them to Alaskan and eastern Siberian populations in the polyploid V. langsdorffii complex. More than 50 species of the 260 allochthonous birds wintering in the Hawaiian Islands are found to breed in the Arctic, occupying habitats in which individual birds might have encountered ancestral V. langsdorffii populations and served as dispersers to the central Pacific region. Acquisition of derived morphological traits (e.g., arborescence and inflorescences), significance of a confirmed Arctic origin for a component of the Hawaiian flora, and the likelihood of other "cryptic" Arctic elements in the Hawaiian flora deserving independent molecular phylogenetic corroboration are discussed.  相似文献   

14.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   

15.
Tree snails of the endemic subfamily Achatinellinae comprise a diverse and important component of the Hawaiian fauna. In recent decades anthropogenic impacts have resulted in devastating extinction rates in Hawaiian tree snails. To address long-standing biogeographic, systematic, and evolutionary questions we used cytochrome c oxidase subunit I (COI) gene sequences to reconstruct the phylogeny of 23 extant species spanning the range of the subfamily from five Hawaiian Islands. To investigate family-level relationships, data were analyzed from 11 terrestrial pulmonate families. Although nodal support for monophyly of the endemic Pacific family Achatinellidae and endemic Hawaiian subfamily Achatinellinae was strong, bifurcation order among deeper ingroup nodes was not well-supported by bootstrap resampling. We hypothesize that lineage extinction and rapidity of lineage formation may have rendered evolutionary reconstruction difficult using a standard phylogenetic approach. Use of an optimized evolutionary model, however, improved resolution and recovered three main clades. The diversification pattern inferred contradicts the traditional biogeographic hypothesis of a Maui origin of the achatinelline lineage. Taxa comprising the basal ingroup clade (Achatinella spp.) and seeding lineages for subsequent clades originated on O'ahu. Therefore it appears that the ancestral colonizing species of achatinellines arrived first on O'ahu from an unknown source, and that O'ahu is the Hawaiian origin of the subfamily. Species previously defined by morphological criteria were generally found to be phylogenetically distinct, and the overall colonization pattern follows the island-age progression rule with several instances of generic polyphyly and back-colonization.  相似文献   

16.
Plants can be genetically engineered for virus resistance by transformation with a viral gene. We transformed tobacco with the tomato spotted wilt virus (TSWV) nucleocapsid gene from the Hawaiian L isolate in order to obtain TSWV resistant breeding lines. Doubled-haploid lines were produced from primary transgenic plants that were selected for resistance to the virus. Several of these lines showed very high levels of resistance and were symptomless after inoculation with the Hawaiian L isolate of TSWV. The accumulation of only low levels of full-length transgene RNA and protein observed in these lines is consistent with an RNA-mediated mechanism of resistance. The lines that were highly resistant to the Hawaiian L isolate of TSWV were also found to be highly resistant to several other isolates of TSWV, while lines that were only moderately resistant to the Hawaiian L isolate were often susceptible to the other isolates. The highly resistant lines were advanced over several generations by self-pollination. Although these lines were fully homozygous, several lines lost resistance in later generations, indicating that the resistance was unstable. Selection for resistance in these unstable lines did not prevent the occurrence of susceptible progeny in subsequent generations. Therefore, testing over several generations is required to determine the stability of resistance when breeding crops with transgenic virus resistance.  相似文献   

17.
Results of the first genus-wide phylogenetic analysis for Santalum (Santalaceae), using a combination of 18S-26S nuclear ribosomal (ITS, ETS) and chloroplast (3' trnK intron) DNA sequences, provide new perspectives on relationships and biogeographic patterns among the widespread and economically important sandalwoods. Congruent trees based on maximum parsimony, maximum likelihood, and Bayesian methods support an origin of Santalum in Australia and at least five putatively bird-mediated, long-distance dispersal events out of Australia, with two colonizations of Melanesia, two of the Hawaiian Islands, and one of the Juan Fernandez Islands. The phylogenetic data also provide the best available evidence for plant dispersal out of the Hawaiian Islands to the Bonin Islands and eastern Polynesia. Inability to reject rate constancy of Santalum ITS evolution and use of fossil-based calibrations yielded estimates for timing of speciation and colonization events in the Pacific, with dates of 1.0-1.5 million yr ago (Ma) and 0.4-0.6 Ma for onset of diversification of the two Hawaiian lineages. The results indicate that the previously recognized sections Polynesica, Santalum, and Solenantha, the widespread Australian species S. lanceolatum, and the Hawaiian species S. freycinetianum are not monophyletic and need taxonomic revision, which is currently being pursued.  相似文献   

18.
Scaptomyza is a highly diversified genus in the family Drosophilidae, having undergone an explosive radiation, along with the Hawaiian‐endemic genus Idiomyia in the Hawaiian Islands: about 60% of 269 Scaptomyza species so far described are endemic to the Hawaiian Islands. Two hypotheses have been proposed for the origin and diversification of Hawaiian drosophilids. One is the “single Hawaiian origin” hypothesis: Scaptomyza and Idiomyia diverged from a single common ancestor that had once colonized the Hawaiian Islands, and then non‐Hawaiian Scaptomyza migrated back to continents. The other is the “multiple origins” hypothesis: Hawaiian Scaptomyza and Idiomyia derived from different ancestors that independently colonized the Hawaiian Islands. A key issue for testing these two hypotheses is to clarify the phylogenetic relationships between Hawaiian and non‐Hawaiian species in Scaptomyza. Toward this goal, we sampled additional non‐Hawaiian Scaptomyza species, particularly in the Old World, and determined the nucleotide sequences of four mitochondrial and seven nuclear genes for these species. Combining these sequence data with published data for 79 species, we reconstructed the phylogeny and estimated ancestral distributions and divergence times. In the resulting phylogenetic trees, non‐Hawaiian Scaptomyza species were interspersed in two Hawaiian clades. From a reconstruction of ancestral biogeography, we inferred that Idiomyia and Scaptomyza diverged outside the Hawaiian Islands and then independently colonized the Hawaiian Islands, twice in Scaptomyza, thus supporting the “multiple origins” hypothesis.  相似文献   

19.
Endemism in Hawaiian marine invertebrates is strikingly lower than that in Hawaiian terrestrial organisms. Although marine speciation has been widespread, there have been no major radiations or species swarms comparable with those commonly reported for terrestrial animals and plants; the marine fauna of the Hawaiian islands is differentiated from its Indo-west Pacific roots but has not diversified. The marked differences between marine and terrestrial endemism provide broad support for several models in which speciation depends on dispersal, colonization rate, or effective population size. Distinguishing among these models will require detailed information on the genetic structure and phylogenies of marine species both in the Hawaiian archipelago and throughout the Pacific.  相似文献   

20.
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia. Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia. Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns. Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands. Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long‐distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号