首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cancer cells frequently undergo metabolic reprogramming to support tumorigenicity and malignancy, which is recognized as a hallmark of cancer. In addition to glycolysis and glutaminolysis, alterations in fatty acid (FA) metabolism have received increasing concerns in the past few years. Recently, accumulating evidence has shown that fatty acid β-oxidation (FAO) is abnormally activated in various tumors, which is associated with the machinery of proliferation, stemness, metastasis, and radiochemotherapeutic resistance of cancer cells. Acyl-CoA synthetases 3 (ACSL3) belongs to a family of enzymes responsible for converting free long-chain FAs into fatty acyl-CoA esters, which act as substrates both for lipid synthesis and FAO.Here, we demonstrate that transforming growth factor beta 1 (TGFβ1) induces the up-regulation of ACSL3 through sterol regulatory element-binding protein 1 (SREBP1) signaling to promote energy metabolic reprogramming in colorectal carcinoma (CRC) cells. ACSL3 mediates the epithelial mesenchymal transition (EMT) and metastasis of CRC cells by activation of FAO pathway to produce ATP and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which sustain redox homeostasis and fuel cancer cells for invasion and distal metastasis. Thus, targeting ACSL3 and FAO metabolic pathways might be exploited for therapeutic gain for CRC and other FAs- addicted cancers.  相似文献   

2.
3.
脂肪酸代谢紊乱容易导致癌症的发生。长链脂酰辅酶A合成酶家族(long chain acyl-coenzyme A synthetase family,ACSLs)负责激活长链脂肪酸,在脂肪酸代谢中发挥重要作用。但在癌细胞中,其调控作用经常被解除,细胞内脂肪酸的分布、种类和数量发生改变,进而导致癌症和其他代谢性疾病的发生。ACSLs 在哺乳动物中包括5种亚型,分别为ACSL1、3、4、5和6。ACSL1在甘油三脂的合成和分配中发挥重要作用;ACSL3有助于脂滴的形成,脂滴对维持脂质稳态具有重要作用;ACSL4的表达与类固醇激素相关,在铁死亡途径中发挥重要作用;ACSL5可以催化外源性脂肪酸的代谢,但不能催化从头合成脂肪酸的代谢;ACSL6在脑内的脂肪酸代谢及生殖器官中精子发生和卵巢功能维持等方面发挥重要作用。ACSLs的调控因子包括转录因子、共激活因子、激素受体、蛋白激酶和小的非编码RNA等。它们通过介导脂肪酸代谢,广泛参与线粒体介导的能量代谢,内质网应激和肿瘤炎性微环境等。此外,ACSLs还作为独立预后因素,成为各种癌症临床诊断和治疗的生物标志物和治疗靶点。近年来,越来越多的研究表明,ACSL家族在癌症的发生发展进程中发挥重要作用。本文从ACSL基因家族,ACSLs与恶性肿瘤及基于ACSLs脂代谢的肿瘤治疗方面进行阐述,为后续ACSL基因家族的研究及肿瘤的靶向治疗提供理论依据和候选分子靶标。  相似文献   

4.
Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.  相似文献   

5.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

6.
Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.  相似文献   

7.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

8.
Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake.  相似文献   

9.
We have previously shown that glycogen synthesis is reduced in lipid-treated C(2)C(12) skeletal muscle myotubes and that this is independent of changes in glucose uptake. Here, we tested whether mitochondrial metabolism of these lipids is necessary for this inhibition and whether the activation of specific protein kinase C (PKC) isoforms is involved. C(2)C(12) myotubes were pretreated with fatty acids and subsequently stimulated with insulin for the determination of glycogen synthesis. The carnitine palmitoyltransferase-1 inhibitor etomoxir, an inhibitor of beta-oxidation of acyl-CoA, did not protect against the inhibition of glycogen synthesis caused by the unsaturated fatty acid oleate. In addition, although oleate caused translocation, indicating activation, of individual PKC isoforms, inhibition of PKC by pharmacological agents or adenovirus-mediated overexpression of dominant negative PKC-alpha, -epsilon, or -theta mutants was unable to prevent the inhibitory effects of oleate on glycogen synthesis. We conclude that neither mitochondrial lipid metabolism nor activation of PKC-alpha, -epsilon, or -theta plays a role in the direct inhibition of glycogen synthesis by unsaturated fatty acids.  相似文献   

10.
ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptake, lipid droplet size, or tri-, di-, or monoacylglycerol levels when compared with a control adipocyte line. However, ACSL1 kd adipocytes displayed a 7-fold increase in basal and a ∼15% increase in forskolin-stimulated fatty acid efflux without any change in glycerol release, indicating a role for the protein in fatty acid reesterification following lipolysis. Consistent with this proposition, ACSL1 kd cells exhibited a decrease in activation and phosphorylation of AMP-activated protein kinase and its primary substrate acetyl-CoA carboxylase. Moreover, ACSL1 kd adipocytes displayed an increase in phosphorylated protein kinase Cθ and phosphorylated JNK, attenuated insulin signaling, and a decrease in insulin-stimulated glucose uptake. These findings identify a primary role of ACSL1 in adipocytes not in control of lipid influx, as previously considered, but in lipid efflux and fatty acid-induced insulin resistance.Fatty acid influx and efflux mechanisms and their regulation affect lipid storage and metabolism in adipocytes. Imbalances in adipose lipid metabolism have been shown to significantly contribute to the development of obesity and associated metabolic diseases, such as type 2 diabetes, hypertension, and cardiovascular disease (13). Although the molecular mechanisms involved in fatty acid efflux are still undefined, several proteins implicated in fatty acid influx have been proposed: CD36 (fatty acid translocase), acyl-CoA synthetases (fatty acid transport protein (FATP)2 and acyl-CoA synthetase (ACSL) family members), plasma membrane fatty acid-binding protein, and caveolin-1 (49).FATPs and long-chain ACSLs are membrane-bound enzymes that catalyze the ATP-dependent esterification of long chain (ACSL) and very long-chain (FATP) fatty acids to their acyl-CoA derivatives (10, 11). Both types of CoA synthetases have common ATP/AMP binding and fatty acid binding signature motifs. In mammals, six different isoforms of FATP (FATP1–FATP6) and five different isoforms of ACSL (ACSL1, -3, -4, -5, and -6) have been identified with tissue-specific expression patterns (12). White adipose tissue predominantly express FATP1, FATP4, and ACSL1, whereas brown adipose tissue in addition expresses ACSL5. Our recent results have confirmed a major role of FATP1 and CD36, but not FATP4, in insulin-stimulated LCFA uptake in 3T3-L1 adipocytes (6).ACSL1 is a ∼78-kDa intrinsic membrane protein localized to multiple sites in a variety of different cells. In liver, ACSL1 has been shown to be localized to the endoplasmic reticulum and mitochondria-associated membranes, whereas in adipocytes, ACSL1 was also found associated with the plasma membrane, the lipid droplet surface (13), and glucose transporter 4-containing vesicles (14, 15). Recent studies have postulated a cooperative role of FATP1 and ACSL1 in the movement of LCFAs across the plasma membrane via a process termed vectoral acylation (16), in which the CoA- and ATP-dependent esterification of internalized fatty acid provides the thermodynamic force necessary for net lipid influx. Evidence supporting this hypothesis came from a functional cloning strategy that identified mouse ACSL1 along with FATP1 as proteins involved in LCFA transport (17). In contrast to the role of ACSL1 in LCFA uptake and triglyceride synthesis in adipocytes, overexpression of ACSL1 in rat primary hepatocytes channeled fatty acids toward diacylglycerol and phospholipids synthesis and increased reacylation of hydrolyzed fatty acids into triglyceride (18).Since lipid flux is defined by the location and activity of its regulatory enzymes and proteins, overexpression strategies can result in changes in metabolism potentially distinct from the endogenous function. To that end, our laboratory has recently undertaken a gene silencing approach to the evaluation of proteins implicated in adipocyte fatty acid influx and efflux, and prior studies have focused on FATP1, FATP4, and CD36 (6). In this report, we evaluated the adipose-specific role(s) of ACSL1 using stable gene-silencing strategies in 3T3-L1 adipocytes using lentiviral delivery of shRNA. We report herein that, contrary to previous reports, in 3T3-L1 adipocytes, ACSL1 does not facilitate the basal or insulin-stimulated component of LCFA uptake. ACSL1 is, however, involved in the reesterification of hydrolyzed fatty acids released during basal and forskolin-stimulated lipolysis, thereby regulating their availability and efflux from the cell. Additionally, fatty acid reesterification by ACSL1 during lipolysis plays a major role in regulating the AMP-activated protein kinase (AMPK) as well as the PKCθ and JNK pathways leading to insulin resistance. Such findings bring to light a new interpretation of the role of ACSL1 and other acyl-CoA synthetases in the control of intermediary metabolism and lipid-mediated signal transduction.  相似文献   

11.
A strong correlation between intramyocellular lipid concentrations and the severity of insulin resistance has fueled speculation that lipid oversupply to skeletal muscle, fat, or liver may desensitize these tissues to the anabolic effects of insulin. To identify free fatty acids (FFAs) capable of inhibiting insulin action, we treated 3T3-L1 adipocytes or C2C12 myotubes with either the saturated FFA palmitate (C16:0) or the monounsaturated FFA oleate (C18:1), which were shown previously to be the most prevalent FFAs in rat soleus and gastrocnemius muscles. In C2C12 myotubes, palmitate, but not oleate, inhibited insulin-stimulation of glycogen synthesis, as well as its activation of Akt/Protein Kinase B (PKB), an obligate intermediate in the regulation of anabolic metabolism. Palmitate also induced the accrual of ceramide and diacylglycerol (DAG), two lipid metabolites that have been shown to inhibit insulin signaling in cultured cells and to accumulate in insulin resistant tissues. Interestingly, in 3T3-L1 adipocytes, neither palmitate nor oleate inhibited glycogen synthesis or Akt/PKB activation, nor did they induce ceramide or DAG synthesis. Using myotubes, we also tested whether other saturated fatty acids blocked insulin signaling while promoting ceramide and DAG accumulation. The long-chain fatty acids stearate (18:0), arachidate (20:0), and lignocerate (24:0) reproduced palmitate's effects on these events, while saturated fatty acids with shorter hydrocarbon chains [i.e., laurate (12:0) and myristate (14:0)] failed to induce ceramide accumulation or inhibit Akt/PKB activation. Collectively these findings implicate excess delivery of long-chain fatty acids in the development of insulin resistance resulting from lipid oversupply to skeletal muscle.  相似文献   

12.
13.
Although each of the five mammalian long-chain acyl-CoA synthetases (ACSL) can bind saturated and unsaturated fatty acids ranging from 12 to 22 carbons, ACSL4 prefers longer chain polyunsaturated fatty acids. In order to gain a better understanding of ACSL4 fatty acid binding, we based a mutagenesis approach on sequence alignments related to ttLC-FACS crystallized from Thermus thermophilus HB8. Four residues selected for mutagenesis corresponded to residues in ttLC-FACS that comprise the fatty acid binding pocket; the fifth residue aligned with a region thought to be involved in fatty acid selectivity of the Escherichia coli acyl-CoA synthetase, FadD. Changing an amino acid at the entry of the putative fatty acid binding pocket, G401L, resulted in an inactive enzyme. Mutating a residue near the pocket entry, L399M, did not significantly alter enzyme activity, but mutating a residue at the hydrophobic terminus of the pocket, S291Y, altered ACSL4's preference for 20:5 and 22:6 and increased its apparent K(m) for ATP. Mutating a site in a region previously identified as important for fatty acid binding also altered activation of 20:4 and 20:5. These studies suggested that the preference of ACSL4 for long-chain polyunsaturated fatty acids can be modified by altering specific amino acid residues.  相似文献   

14.
Long-chain acyl coenzyme A (acyl-CoA) synthetase isoform 1 (ACSL1) catalyzes the synthesis of acyl-CoA from long-chain fatty acids and contributes the majority of cardiac long-chain acyl-CoA synthetase activity. To understand its functional role in the heart, we studied mice lacking ACSL1 globally (Acsl1(T-/-)) and mice lacking ACSL1 in heart ventricles (Acsl1(H-/-)) at different times. Compared to littermate controls, heart ventricular ACSL activity in Acsl1(T-/-) mice was reduced more than 90%, acyl-CoA content was 65% lower, and long-chain acyl-carnitine content was 80 to 90% lower. The rate of [(14)C]palmitate oxidation in both heart homogenate and mitochondria was 90% lower than in the controls, and the maximal rates of [(14)C]pyruvate and [(14)C]glucose oxidation were each 20% higher. The mitochondrial area was 54% greater than in the controls with twice as much mitochondrial DNA, and the mRNA abundance of Pgc1α and Errα increased by 100% and 41%, respectively. Compared to the controls, Acsl1(T-/-) and Acsl1(H-/-) hearts were hypertrophied, and the phosphorylation of S6 kinase, a target of mammalian target of rapamycin (mTOR) kinase, increased 5-fold. Our data suggest that ACSL1 is required to synthesize the acyl-CoAs that are oxidized by the heart, and that without ACSL1, diminished fatty acid (FA) oxidation and compensatory catabolism of glucose and amino acids lead to mTOR activation and cardiac hypertrophy without lipid accumulation or immediate cardiac dysfunction.  相似文献   

15.
Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.  相似文献   

16.
Long-chain acyl-coenzyme A synthetases (ACSLs) are a family of enzymes that convert free long-chain fatty acids into their acyl-coenzyme A (CoA) forms. ACSL4, belonging to the ACSL family, shows a preferential use of arachidonic acid (AA) as its substrate and plays a role in the remodeling of AA-containing phospholipids by incorporating free AA. However, little is known about the roles of ACSL4 in inflammatory responses. Here, we assessed the roles of ACSL4 on the effector functions of bone marrow-derived macrophages (BMDMs) obtained from mice lacking ACSL4. Liquid chromatography–tandem mass spectrometry analysis revealed that various highly unsaturated fatty acid (HUFA)-derived fatty acyl-CoA species were markedly decreased in the BMDMs obtained from ACSL4-deficient mice compared with those in the BMDMs obtained from wild-type mice. BMDMs from ACSL4-deficient mice also showed a reduced incorporation of HUFA into phosphatidylcholines. The stimulation of BMDMs with lipopolysaccharide (LPS) elicited the release of prostaglandins (PGs), such as PGE2, PGD2 and PGF, and the production of these mediators was significantly enhanced by ACSL4 deficiency. In contrast, neither the LPS-induced release of cytokines, such as IL-6 and IL-10, nor the endocytosis of zymosan or dextran was affected by ACSL4 deficiency. These results suggest that ACSL4 has a crucial role in the maintenance of HUFA composition of certain phospholipid species and in the incorporation of free AA into the phospholipids in LPS-stimulated macrophages. ACSL4 dysfunction may facilitate inflammatory responses by an enhanced eicosanoid storm.  相似文献   

17.
Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors α and β (LXRα and LXRβ), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells.  相似文献   

18.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

19.
20.
Accumulation of intracellular lipid in obesity is associated with metabolic disease in many tissues including liver. Storage of fatty acid as triglyceride (TG) requires the activation of fatty acids to long-chain acyl-CoAs (LC-CoA) by the enzyme acyl-CoA synthetase (ACSL). There are five known isoforms of ACSL (ACSL1, -3, -4, -5, -6), which vary in their tissue specificity and affinity for fatty acid substrates. To investigate the role of ACSL1 in the regulation of lipid metabolism, we used adenoviral-mediated gene transfer to overexpress ACSL1 in the human hepatoma cell-line HepG2 and in liver of rodents. Infection of HepG2 cells with the adenoviral construct AdACSL1 increased ACSL activity >10-fold compared with controls after 24 h. HepG2 cells overexpressing ACSL1 had a 40% higher triglyceride (TG) content (93 +/- 3 vs. 67 +/- 2 nmol/mg protein in controls, P < 0.05) after 24-h exposure to 1 mM oleate. Furthermore, ACSL1 overexpression produced a 60% increase in cellular LCA-CoA content (160 +/- 6 vs. 100 +/- 6 nmol/g protein in controls, P < 0.05) and increased [(14)C]oleate incorporation into TG without significantly altering fatty acid oxidation. In mice, AdACSL1 administration increased ACSL1 mRNA and protein more than fivefold over controls at 4 days postinfection. ACSL1 overexpression caused a twofold increase in TG content in mouse liver (39 +/- 4 vs. 20 +/- 2 mumol/g wet wt in controls, P < 0.05), and overexpression in rat liver increased [1-(14)C]palmitate clearance into liver TG. These in vitro and in vivo results suggest a pivotal role for ACSL1 in regulating TG synthesis in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号