首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Patterns of specialization and the structure of interactions between bats and ectoparasitic flies have been studied mostly on non-urban environments and at loca...  相似文献   

2.
Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package at https://github.com/cjpardodelahoz/pss.  相似文献   

3.
4.
  1. Estimating the impacts of anthropogenic disturbances requires an understanding of the habitat‐use patterns of individuals within a population. This is especially the case when disturbances are localized within a population''s spatial range, as variation in habitat use within a population can drastically alter the distribution of impacts.
  2. Here, we illustrate the potential for multilevel binomial models to generate spatial networks from capture–recapture data, a common data source used in wildlife studies to monitor population dynamics and habitat use. These spatial networks capture which regions of a population''s spatial distribution share similar/dissimilar individual usage patterns, and can be especially useful for detecting structured habitat use within the population''s spatial range.
  3. Using simulations and 18 years of capture–recapture data from St. Lawrence Estuary (SLE) beluga, we show that this approach can successfully estimate the magnitude of similarities/dissimilarities in individual usage patterns across sectors, and identify sectors that share similar individual usage patterns that differ from other sectors, that is, structured habitat use. In the case of SLE beluga, this method identified multiple clusters of individuals, each preferentially using restricted areas within their summer range of the SLE.
  4. Multilevel binomial models can be effective at estimating spatial structure in habitat use within wildlife populations sampled by capture–recapture of individuals, and can be especially useful when sampling effort is not evenly distributed. Our finding of a structured habitat use within the SLE beluga summer range has direct implications for estimating individual exposures to localized stressors, such as underwater noise from shipping or other activities.
  相似文献   

5.
The balance of pollination competition and facilitation among co‐flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio‐temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi‐scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio‐temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect‐pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm‐scale experiment (125 ha). We applied an individual‐based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio‐temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra‐ and interspecific plant–pollinator interactions respond to spatio‐temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co‐occurrence of pollinator‐mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

6.
The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators.  相似文献   

7.
Gastrointestinal (GI) helminths are common parasites of humans, wildlife, and livestock, causing chronic infections. In humans and wildlife, poor nutrition or limited resources can compromise an individual''s immune response, predisposing them to higher helminth burdens. This relationship has been tested in laboratory models by investigating infection outcomes following reductions of specific nutrients. However, much less is known about how diet supplementation can impact susceptibility to infection, acquisition of immunity, and drug efficacy in natural host–helminth systems. We experimentally supplemented the diet of wood mice (Apodemus sylvaticus) with high-quality nutrition and measured resistance to the common GI nematode Heligmosomoides polygyrus. To test whether diet can enhance immunity to reinfection, we also administered anthelmintic treatment in both natural and captive populations. Supplemented wood mice were more resistant to H. polygyrus infection, cleared worms more efficiently after treatment, avoided a post-treatment infection rebound, produced stronger general and parasite-specific antibody responses, and maintained better body condition. In addition, when applied in conjunction with anthelmintic treatment, supplemented nutrition significantly reduced H. polygyrus transmission potential. These results show the rapid and extensive benefits of a well-balanced diet and have important implications for both disease control and wildlife health under changing environmental conditions.  相似文献   

8.
George Price showed how the effects of natural selection and environmental change could be mathematically partitioned. This partitioning may be especially useful for understanding host–parasite coevolution, where each species represents the environment for the other species. Here, we use coupled Price equations to study this kind of antagonistic coevolution. We made the common assumption that parasites must genetically match their host''s genotype to avoid detection by the host''s self/nonself recognition system, but we allowed for the possibility that non‐matching parasites have some fitness. Our results show how natural selection on one species results in environmental change for the other species. Numerical iterations of the model show that these environmental changes can periodically exceed the changes in mean fitness due to natural selection, as suggested by R.A. Fisher. Taken together, the results give an algebraic dissection of the eco‐evolutionary feedbacks created during host–parasite coevolution.  相似文献   

9.
Generalization of pollination systems is widely accepted by ecologists in the studies of plant–pollinator interaction networks at the community level, but the degree of generalization of pollination networks remains largely unknown at the individual pollinator level. Using potential legitimate pollinators that were constantly visiting flowers in two alpine meadow communities, we analyzed the differences in the pollination network structure between the pollinator individual level and species level. The results showed that compared to the pollinator species‐based networks, the linkage density, interaction diversity, interaction evenness, the average plant linkage level, and interaction diversity increased, but connectance, degree of nestedness, the average of pollinator linkage level, and interaction diversity decreased in the pollinator individual‐based networks, indicating that pollinator individuals had a narrower food niche than their counterpart species. Pollination networks at the pollinator individual level were more specialized at the network level (H2) and the plant species node level (d′) than at the pollinator species‐level networks, reducing the chance of underestimating levels of specialization in pollination systems. The results emphasize that research into pollinator individual‐based pollination networks will improve our understanding of the pollination networks at the pollinator species level and the coevolution of flowering plants and pollinators.  相似文献   

10.
11.
Genetic variation in resistance against parasite infections is a predominant feature in host–parasite systems. However, mechanisms maintaining genetic polymorphism in resistance in natural host populations are generally poorly known. We explored whether differences in natural infection pressure between resource‐based morphs of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance profiles. We experimentally exposed offspring of two morphs from Lake Þingvallavatn (Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr (“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infecting the eye humor. We found that there were no differences in resistance between the morphs, but clear differences among families within each morph. Moreover, we found suggestive evidence of resistance of offspring within families being positively correlated with the parasite load of the father, but not with that of the mother. Our results suggest that the inherited basis of parasite resistance in this system is likely to be related to variation among host individuals within each morph rather than ecological factors driving divergent resistance profiles at morph level. Overall, this may have implications for evolution of resistance through processes such as sexual selection.  相似文献   

12.
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species’ populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host–pathogen systems. We adapted an established individual‐based model of host–pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host''s explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life‐history events affect host–pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts’ biological events. However, a temporal mismatch reduced host–pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat‐dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host–pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.  相似文献   

13.
Brown bear‐mediated conflicts have caused immense economic loss to the local people living across the distribution range. In India, limited knowledge is available on the Himalayan brown bear (HBB), making human–brown bear conflict (HBC) mitigation more challenging. In this study, we studied HBC in the Lahaul valley using a semi‐structured questionnaire survey by interviewing 398 respondents from 37 villages. About 64.8% of respondents reported conflict in two major groups—crop damage (30.6%) and livestock depredations (6.2%), while 28% reported both. Conflict incidences were relatively high in summer and frequently occurred in areas closer to the forest (<500 m) and between the elevations range of 2700 m to 3000 m above sea level (asl). The dependency of locals on forest resources (70%) for their livelihood makes them vulnerable to HBC. The “upper lower” class respondents were most impacted among the various socioeconomic classes. Two of the four clusters were identified as HBC hot spots in Lahaul valley using SaTscan analysis. We also obtained high HBC in cluster II with a 14.35 km radius. We found that anthropogenic food provisioning for HBB, livestock grazing in bear habitats, and poor knowledge of animal behavior among the communities were the major causes of HBC. We suggest horticulture crop waste management, controlled and supervised grazing, ecotourism, the constitution of community watch groups, and others to mitigate HBC. We also recommend notifying a few HBB abundant sites in the valley as protected areas for the long‐term viability of the HBB in the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号