首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In angiosperms, the α/β hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (−)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (−)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.

The study of moss PpKAI2L receptors for strigolactones and related compounds highlights MORE AXILLARY GROWTH2-dependent and -independent pathways for the perception of these compounds.  相似文献   

2.
The plant hormones strigolactones and smoke-derived karrikins are butenolide signals that control distinct aspects of plant development. Perception of both molecules in Arabidopsis thaliana requires the F-box protein MORE AXILLARY GROWTH2 (MAX2). Recent studies suggest that the homologous SUPPRESSOR OF MAX2 1 (SMAX1) in Arabidopsis and DWARF53 (D53) in rice (Oryza sativa) are downstream targets of MAX2. Through an extensive analysis of loss-of-function mutants, we demonstrate that the Arabidopsis SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 are co-orthologs of rice D53 that promote shoot branching. SMXL7 is degraded rapidly after treatment with the synthetic strigolactone mixture rac-GR24. Like D53, SMXL7 degradation is MAX2- and D14-dependent and can be prevented by deletion of a putative P-loop. Loss of SMXL6,7,8 suppresses several other strigolactone-related phenotypes in max2, including increased auxin transport and PIN1 accumulation, and increased lateral root density. Although only SMAX1 regulates germination and hypocotyl elongation, SMAX1 and SMXL6,7,8 have complementary roles in the control of leaf morphology. Our data indicate that SMAX1 and SMXL6,7,8 repress karrikin and strigolactone signaling, respectively, and suggest that all MAX2-dependent growth effects are mediated by degradation of SMAX1/SMXL proteins. We propose that functional diversification within the SMXL family enabled responses to different butenolide signals through a shared regulatory mechanism.  相似文献   

3.
独脚金内酯调控水稻分蘖的研究进展   总被引:4,自引:0,他引:4  
水稻(Oryza sativa)作为世界上最主要的粮食作物之一, 对其主要农艺性状调控机理的研究具有重要意义。分蘖是水稻生长发育过程中一种特殊的分枝, 它不仅是与水稻产量密切相关的重要农艺性状, 也是揭示高等植物侧枝生长发育机制的理想模型。独脚金内酯(strigolactone, SL)是一类新型植物激素, 能够抑制植物分枝的生长发育。近年来, 关于SL合成与信号在调控水稻分蘖方面的研究取得了重要进展, 但对其信号转导的下游组分的研究还相对匮乏。该文综述了SL合成途径、信号途径及下游靶基因调控水稻分蘖的研究进展, 并与在拟南芥(Arabidopsis thaliana)、豌豆(Pisum sativum)和矮牵牛(Petunia hybrida)中的研究进行了比较, 同时还对如何挖掘SL途径的新组分进行了讨论。  相似文献   

4.
Reductive metabolism of strigolactones (SLs) in several plants was investigated. Analysis of aquaculture filtrates of cowpea and sorghum each fed with four stereoisomers of GR24, the most widely used synthetic SL, revealed stereospecific reduction of the double bond at C-3′ and C-4′ in the butenolide D-ring with preference for an unnatural 2′S configuration. The cowpea metabolite converted from 2′-epi-GR24 and the sorghum metabolite converted from ent-GR24 had the methyl group at C-4′ in the trans configuration with the substituent at C-2′, different from the cis configuration of the synthetic H2-GR24 reduced with Pd/C catalyst. The plants also reduced the double bond in the D-ring of 5-deoxystrigol isomers with a similar preference. The metabolites and synthetic H2-GR24 stereoisomers were much less active than were the GR24 stereoisomers in inducing seed germination of the root parasitic weeds Striga hermonthica, Orobanche crenata, and O. minor. These results provide additional evidence of the importance of the D-ring for bioactivity of SLs.  相似文献   

5.

Main conclusion

Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (?)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.
  相似文献   

6.
Strigolactones (SLs) are a class of plant hormones that regulate shoot branching as well as being known as root-derived signals for parasitic and symbiotic interactions. The physical interaction between SLs and the DWARF14 (D14) receptor family can be examined by differential scanning fluorimetry (DSF) that monitors the changes in protein melting temperature (Tm). The Tm of D14 is lowered by bioactive SLs in DSF analysis. In this report, we screened the compounds that lower the Tm of Arabidopsis D14 (AtD14) as potential candidates for SL agonists using DSF analysis. Subsequent physiological analyzes revealed that 113D10 acts as a novel SL agonist in a D14-dependent manner. Intriguingly, 113D10 has a chemical structure different from natural SLs in that it does not possess an enol ether bond that connects to a methylbutenolide moiety. Moreover, 113D10 does not stimulate seed germination of root parasitic plants. Accordingly, 113D10 can be a useful tool for SL studies and agricultural applications.  相似文献   

7.
Strigolactones (SLs) are important intrinsic growth regulators that control plant architecture by coordinating shoot and root development. Recent studies demonstrate that SL signals act via targeting the degradation protein DWARF53 (D53) family of chaperonin-like proteins. This process requires DWARF14 (D14) as strigolactones signal receptor and DWARF3 (D3) forming Skp-Cullin-F-box (SCF) complex as ubiquitin E3 ligase. Although the interactions of these signal components can be expected, where and how the SLs signalling occur within cells in a tissue-specific manner is still uncertain. In this study, we characterize a rice high-tillering dwarf mutant, ext.-M1B, displaying resistance to synthetic strigolactone mixture rac-GR24. Through genetic analysis, we find that ext.-M1B is a new allelic mutant of D3 with a nucleotide mutation resulting in a truncated protein of wide-type D3. We demonstrate that the mutation affects neither gene expression level nor the protein sub-cellular localization, whereas it disrupts the perception of SLs signal in ext.-M1B mutant. Moreover, we find that overexpression of D3 in wild type background causes no significant phenotype, but suppression of D3 by RNA interfering results in a clear phenocopy of SL mutants. By expressing fluorescent D3 fusion protein in rice, we first show that D3 is stable consistently in the nucleus with or without strigolactone treatment. Taken together, our data indicates that D3 encoding an F-box protein in nucleus, as a stable signal component response to strigolactone regulating rice shoot architecture.  相似文献   

8.
9.
Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2′-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2′-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2′-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.  相似文献   

10.
Strigolactones (SLs) are a recently discovered type of plant hormone that controls various developmental processes. The DWARF53 (D53) protein in rice and the SMAX1-LIKE (SMXL) family in Arabidopsis repress SL signaling. In this study, bioinformatics analyses were performed, and 236 SMXL proteins were identified in 28 sequenced plants. A phylogenetic analysis indicated that all potential SMXL proteins could be divided into three groups and that the SMXL proteins may have originated in Bryophytes. An analysis of the SMXL chromosomal locations suggested that gene duplication events at different times led to expansion of the SMXL family members in Angiospermae. Subsequently, the gene structure and protein modeling of MdSMXLs showed that they are highly conserved. The expression patterns of MdSMXLs indicated that they were expressed in different organs of apple (stems, roots, leaves, flowers, and fruits) at varying levels and that MdSMXLs may participate in the SL signaling pathway and the response to abiotic stress. This study provides a valuable foundation for additional investigations into the function of the SMXL gene family in plants.  相似文献   

11.
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.  相似文献   

12.
Strigolactones (SLs) act as plant hormones that inhibit shoot branching and stimulate secondary growth of the stem, primary root growth, and root hair elongation. In the moss Physcomitrella patens, SLs regulate branching of chloronemata and colony extension. In addition, SL-deficient and SL-insensitive mutants show delayed leaf senescence. To explore the effects of SLs on leaf senescence in rice (Oryza sativa L.), we treated leaf segments of rice dwarf mutants with a synthetic SL analogue, GR24, and evaluated their chlorophyll contents, ion leakage, and expression levels of senescence-associated genes. Exogenously applied GR24 restored normal leaf senescence in SL-deficient mutants, but not in SL-insensitive mutants. Most plants highly produce endogenous SLs in response to phosphate deficiency. Thus, we evaluated effects of GR24 under phosphate deficiency. Chlorophyll levels did not differ of in the wild-type between the sufficient and deficient phosphate conditions, but increased in the SL-deficient mutants under phosphate deficiency, leading in the strong promotion of leaf senescence by GR24 treatment. These results indicate that the mutants exhibited increased responsiveness to GR24 under phosphate deficiency. In addition, GR24 accelerated leaf senescence in the intact SL-deficient mutants under phosphate deficiency as well as dark-induced leaf senescence. The effects of GR24 were stronger in d10 compared to d17. Based on these results, we suggest that SLs regulate leaf senescence in response to phosphate deficiency.  相似文献   

13.
14.
15.
Strigolactones (SLs) are rhizosphere communication chemicals. Recent studies of highly branched mutants revealed that SL or its metabolites work as a phytohormone to inhibit shoot branching. When SLs are exogenously applied to the rice d10-1 mutant that has a highly branched phenotype caused by a defect in the SL biosynthesis gene (CCD8), they inhibit tiller bud outgrowth (branching in rice) of the mutant. We focused our attention on the SL function as a phytohormone and tried to find new chemicals mimicking the hormonal action of SL by screening chemicals that inhibit branching of rice d10-1 mutant. Fortunately, we found 5-(4-chlorophenoxy)-3-methylfuran-2(5H)-one (3a) as a new chemical possessing SL-like activity against the rice d10-1 mutant. Then, we prepared several derivatives of 3a (3b-3k) to examine their ability to inhibit shoot branching of rice d10-1. These derivatives were synthesized by a one-pot coupling reaction between phenols and halo butenolide to give 5-phenoxy 3-methylfuran-2(5H)-one (3) derivatives, which possess a common substructure with SLs. Some of the derivatives showed SL-like activity more potently than GR24, a typical SL derivative, in a rice assay. As SLs also show activity by inducing seed germination of root parasitic plants, the induction activity of these derivatives was also evaluated. Here we report the structure-activity relationships of these compounds.  相似文献   

16.
The present study evaluated the impact of rac-GR24 on biomass and astaxanthin production under phenol stress coupled with biodiesel recovery from Haematococcus pluvialis. Phenol supplementation showed negative impact on growth, where the lowest biomass productivity of 0.027 g L-1 day−1 was recorded at 10 µM phenol, while 0.4 µM rac-GR24 supplementation showed the highest recorded biomass productivity of 0.063 g L-1 day−1. Coupling 0.4 µM rac-GR24 at different phenol concentrations confirmed the potential of rac-GR24 to mitigate the toxic effect of phenol by enhancing yield of PSII yield, RuBISCo activity, and antioxidant efficiency, which resulted in improved phenol phycoremediation efficiency. In addition, results suggested a synergistic action by rac-GR24 supplementation under phenol treatment where rac-GR24 enhanced lipid accumulation, while phenol enhanced astaxanthin production. Dual supplementation of rac-GR24 and phenol showed the highest recorded FAMEs content, which was 32.6% higher than the control, with improved biodiesel quality. The suggested approach could enhance the economic feasibility of triple-purpose application of microalgae in wastewater treatment, astaxanthin recovery, and biodiesel production.  相似文献   

17.
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2''-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号