首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
新型冠状病毒肺炎(2019 novel coronavirus disease,COVID-19),一种由动物来源的新型冠状病毒(severe acute respiratory syndrome coronavirus 2,SRAS-CoV-2)感染所致的疾病在全球范围内急速传播,严重的危害人类的健康.快速、准确的诊...  相似文献   

2.
新冠病毒引发的急性呼吸道传染病造成了全球大流行的新冠肺炎,严重危害世界公共卫生安全,迫切需要研发有效治疗新冠肺炎的药物。综述了疫情暴发初期抗新冠肺炎药物研发的进展,重点介绍“老药新用”、小分子及抗体创新药物研发和中药等。通过“老药新用”研究发现多个老药具有抑制新冠病毒复制作用,其中瑞德西韦、法匹拉韦、氯喹和羟氯喹等进入临床研究,尤其是瑞德西韦成为被美国FDA批准用于新冠肺炎治疗的首个药物。针对新冠病毒识别宿主细胞受体的S蛋白开展的抗体发现和靶向3CL蛋白酶及RNA依赖的RNA聚合酶等新冠病毒复制过程中的关键蛋白质开展小分子抑制剂发现是抗新冠肺炎创新药物研究中的主要方向。此外,中药在防治新冠肺炎中发挥了重要作用,金花清感颗粒、莲花清瘟胶囊、血必净注射液、双黄连口服液、清肺排毒汤、化湿败毒方、宣肺败毒方等都进入了新冠肺炎治疗的临床研究及应用。  相似文献   

3.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

4.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.  相似文献   

5.
6.
章菲  王义兵  吴利东 《病毒学报》2021,37(2):422-427
2019年12月出现于湖北武汉的一种新型冠状病毒(SARS-CoV-2)感染所致肺炎疫情,给人类生命安全造成威胁。迄今为止,对2019年出现的SARS-CoV-2的研究仍处于起步阶段,本文就其相关研究进展进行综述,重点阐述了目前关于SARS-CoV-2的病原学与致病机制方面的研究成果,同时对其流行病学以及该病毒引发的肺炎临床特点加以总结,有助于读者及时了解SARS-CoV-2最新的研究动态,并为今后开展治疗药物及疫苗研发提供方向。  相似文献   

7.
Novel 2019 coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and coronavirus disease 2019 (COVID-19), the respiratory syndrome it causes, have shaken the world to its core by infecting and claiming the lives of many people since originating in December 2019 in Wuhan, China. World Health Organization and several states have declared a pandemic situation and state of emergency, respectively. As there is no treatment for COVID-19, several research institutes and pharmaceutical companies are racing to find a cure. Advances in computational approaches have allowed the screening of massive antiviral compound libraries to identify those that may potentially work against SARS-CoV-2. Antiviral agents developed in the past to combat other viruses are being repurposed. At the same time, new vaccine candidates are being developed and tested in preclinical/clinical settings. This review provides a detailed overview of select repurposed drugs, their mechanism of action, associated toxicities, and major clinical trials involving these agents.  相似文献   

8.
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has impacted the world severely. The binding of the SARS-CoV-2 virus to the angiotensin-converting enzyme 2 (ACE2) and its intake by the host cell is a necessary step for infection. ACE2 has garnered widespread therapeutic possibility as it is entry/interactive point for SARS-CoV-2, responsible for coronavirus disease 2019 (COVID-19) pandemic and providing a critical regulator for immune modulation in various disease. Patients with suffering from cancer always being on the verge of being immune compromised therefore gaining knowledge about how SARS-CoV-2 viruses affecting immune cells in human cancers will provides us new opportunities for preventing or treating virus-associated cancers. Despite COVID-19 pandemic got center stage at present time, however very little research being explores, which increase our knowledge in context with how SARS-CoV-2 infection affect cancer a cellular level. Therefore, in light of the ACE-2 as an important contributor of COVID-19 global, we analyzed correlation between ACE2 and tumor immune infiltration (TIL) level and the type markers of immune cells were investigated in breast cancer subtypes by using TIMER database. Our findings shed light on the immunomodulatory role of ACE2 in the luminal A subtype which may play crucial role in imparting therapeutic resistance in this cancer subtype.  相似文献   

9.
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.  相似文献   

10.
《Cytotherapy》2022,24(3):235-248
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.  相似文献   

11.
Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5-1.25 mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection.  相似文献   

12.
Since the emergence of the new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.  相似文献   

13.
The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus–host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.  相似文献   

14.
COVID-19 (coronavirus disease-2019) is a contagious illness that has been declared a global epidemic by the World Health Organization (WHO). The coronavirus causes diseases ranging in severity from the common cold to severe respiratory diseases and death. Coronavirus primarily affects blood pressure by attaching to the angiotensin converting enzyme 2 (ACE 2) receptor. This virus has an impact on multiple organ systems, including the central nervous system, immune system, cardiovascular system, peripheral nervous system, gastrointestinal tract, endocrine system, urinary system, skin, and pregnancy. For the prevention of COVID-19, various vaccines such as viral-like particle vaccines, entire inactivated virus vaccines, viral vector vaccines, live attenuated virus vaccines, subunit vaccines, RNA vaccines, and DNA vaccines are now available. Some of the COVID-19 vaccines are reported to cause a variety of adverse effects that range from mild to severe in nature. SARS-CoV-2 replication is controlled by the RNA-Dependent RNA-Polymerase enzyme (RdRp). The availability of FDA-approved anti-RdRp drugs (Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir) as potent drugs against SARS-CoV-2 that tightly bind to its RdRp may aid in the treatment of patients and reduce the risk of the mysterious new form of COVID-19 viral infection. RdRp inhibitors, such as remdesivir (an anti-Ebola virus experimental drug) and favipiravir (an anti-influenza drug), inhibit RdRp and thus slow the progression of COVID-19 and associated clinical symptoms, as well as significantly shorten recovery time. Molnupiravir, an orally active RdRp inhibitor and noval broad spectrum antiviral agent, is an isopropyl pro-drug of EIDD-1931 for emergency use. Galidesivir's in vitro and in vivo activities are limited to RNA of human public health concern. Top seeds for antiviral treatments with high potential to combat the SARS-CoV-2 strain include guanosine derivatives (IDX-184), setrobuvir, and YAK. The goal of this review is to compile scattered information on available COVID-19 vaccines and other treatments for protecting the human body from their harmful effects and to provide options for making better choices in a timely manner.  相似文献   

15.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)席卷全球,具有较高的传染性和死亡率,但目前尚缺乏安全有效的COVID-19疫苗与治疗药物.新型冠状病毒主蛋白酶(main protease,Mpro)的进化高度保守,在调控新冠病毒RNA复制中具有重要的生物学功能,已成为新型广谱抗冠状...  相似文献   

16.
The coronavirus disease 19 (COVID-19) has been rampant since 2019, severely affecting global public health, and causing 5.75 million deaths worldwide. So far, many vaccines have been developed to prevent the infection of SARS-CoV-2 virus. However, the emergence of new variants may threat vaccine recipients as they might evade immunological surveillance that depends on the using of anti-SARS-CoV-2 antibody to neutralize the viral particles. Recent studies have found that recipients who received two doses of vaccination plus an additional booster shoot were able to quickly elevate neutralization response and immune response against wild-type SARS-CoV-2 virus and some initially appeared viral variants. In this review, we assessed the real-world effectiveness of different COVID-19 vaccines by population studies and neutralization assays and compared neutralization responses of booster vaccines in vitro. Finally, as the efficacy of COVID-19 vaccine is expected to decline over time, continued vaccination should be considered to achieve a long-term immune protection against coronavirus.  相似文献   

17.
《Genomics》2021,113(2):564-575
The recent outbreak of coronavirus disease 2019 (COVID-19) by SARS-CoV-2 has led to uptodate 24.3 M cases and 0.8 M deaths. It is thus in urgent need to rationalize potential therapeutic targets against the progression of diseases. An effective, feasible way is to use the pre-existing ΔORF6 mutant of SARS-CoV as a surrogate for SARS-CoV-2, since both lack the moiety responsible for interferon antagonistic effects. By analyzing temporal profiles of upregulated genes in ΔORF6-infected Calu-3 cells, we prioritized 55 genes and 238 ligands to reposition currently available medications for COVID-19 therapy. Eight of them are already in clinical trials, including dexamethasone, ritonavir, baricitinib, tofacitinib, naproxen, budesonide, ciclesonide and formoterol. We also pinpointed 16 drug groups from the Anatomical Therapeutic Chemical classification system, with the potential to mitigate symptoms of SARS-CoV-2 infection and thus to be repositioned for COVID-19 therapy.  相似文献   

18.
SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.  相似文献   

19.
Several organs, such as the heart, breasts, intestine, testes, and ovaries, have been reported to be target tissues of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To date, no studies have demonstrated SARS-CoV-2 infection in the female reproductive system. In the present study, we investigated the effects of SARS-CoV-2 infection on ovarian function by comparing follicular fluid (FF) from control and recovered coronavirus disease 2019 (COVID-19) patients and by evaluating the influence of these FF on human endothelial and non-luteinized granulosa cell cultures. Our results showed that most FFs (91.3%) from screened post COVID-19 patients were positive for IgG antibodies against SARS-CoV-2. Additionally, patients with higher levels of IgG against SARS-CoV-2 had lower numbers of retrieved oocytes. While VEGF and IL-1β were significantly lower in post COVID-19 FF, IL-10 did not differ from that in control FF. Moreover, in COV434 cells stimulated with FF from post COVID-19 patients, steroidogenic acute regulatory protein (StAR), estrogen-receptor β (Erβ), and vascular endothelial growth factor (VEGF) expression were significantly decreased, whereas estrogen-receptor α (ERα) and 3β-hydroxysteroid dehydrogenase (3β-HSD) did not change. In endothelial cells stimulated with post COVID-19 FF, we observed a decrease in cell migration without changes in protein expression of certain angiogenic factors. Both cell types showed a significantly higher γH2AX expression when exposed to post COVID-19 FF. In conclusion, our results describe for the first time that the SARS-CoV-2 infection adversely affects the follicular microenvironment, thus dysregulating ovarian function.  相似文献   

20.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号