首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early endosome autoantigen localization to early endosomes is mediated by a C-terminal region, which includes a calmodulin binding motif, a Rab5 interaction site, and a FYVE domain that selectively binds phosphatidyl inositol 3-phosphate. The crystal structure of the C-terminal region bound to inositol 1,3-bisphosphate reveals an organized, quaternary assembly consisting of a parallel coiled coil and a dyad-symmetric FYVE domain homodimer. Structural and biochemical observations support a multivalent mechanism for endosomal localization in which domain organization, dimerization, and quaternary structure amplify the weak affinity and modest specificity of head group interactions with conserved residues. A unique mode of membrane engagement deduced from the quaternary structure of the C-terminal region provides insight into the structural basis of endosome tethering.  相似文献   

2.
Early endosome antigen 1 (EEA1) is 170-kDa polypeptide required for endosome fusion. EEA1 binds to both phosphtidylinositol 3-phosphate (PtdIns3P) and to Rab5-GTP in vitro, but the functional role of this dual interaction at the endosomal membrane is unclear. Here we have determined the structural features in EEA1 required for binding to these ligands. We have found that the FYVE domain is critical for both PtdIns3P and Rab5 binding. Whereas PtdIns3P binding only required the FYVE domain, Rab5 binding additionally required a 30-amino acid region directly adjacent to the FYVE domain. Microinjection of glutathione S-transferase fusion constructs into Cos cells revealed that the FYVE domain alone is insufficient for localization to cellular membranes; the upstream 30-amino acid region required for Rab5 binding must also be present for endosomal binding. The importance of Rab5 in membrane binding of EEA1 is underscored by the finding that the increased expression of wild-type Rab5 increases endosomal binding of EEA1 and decreases its dependence on PtdIns3P. Thus, the levels of Rab5 are rate-limiting for the recruitment of EEA1 to endosome membranes. PtdIns3P may play a role in modulating the Rab5 EEA1 interaction.  相似文献   

3.
Ca2+ is an essential requirement in membrane fusion, acting through binding proteins such as calmodulin (CaM). Ca2+/CaM is required for early endosome fusion in vitro, however, the molecular basis for this requirement is unknown. An additional requirement for endosome fusion is the protein Early Endosome Antigen 1 (EEA1), and its recruitment to the endosome depends on phosphatidylinositol 3-phosphate [PI(3)P] and the Rab5 GTPase. Herein, we demonstrate that inhibition of Ca2+/CaM, by using either chemical inhibitors or specific antibodies directed to CaM, results in a profound inhibition of EEA1 binding to endosomal membranes both in live cells and in vitro. The concentration of Ca2+/CaM inhibitors required for a full dissociation of EEA1 from endosomal membranes had no effect on the activity of phosphatidylinositol 3-kinases or on endogenous levels of PI(3)P. However, the interaction of EEA1 with liposomes containing PI(3)P was decreased by Ca2+/CaM inhibitors. Thus, Ca2+/CaM seems to be required for the stable interaction of EEA1 with endosomal PI(3)P, perhaps by directly or indirectly stabilizing the quaternary organization of the C-terminal FYVE domain of EEA1. This requirement is likely to underlie at least in part the essential role of Ca2+/CaM in endosome fusion.  相似文献   

4.
Phosphatidylinositol 3-phosphate (PtdIns(3)P), generated via the phosphorylation of phosphatidylinositol by phosphatidylinositol 3-kinase (PI 3-kinase), plays an essential role in intracellular membrane traffic. The underlying mechanism is still not understood in detail, but the recent identification of the FYVE finger as a protein domain that binds specifically to PtdIns(3)P provides a number of potential effectors for PtdIns(3)P. The FYVE finger (named after the first letter of the four proteins containing it; Fab1p, YOTB, Vac1p and EEA1) is a double-zinc binding domain that is conserved in more than 30 proteins from yeast to mammals. It is found in several proteins involved in intracellular traffic, and FYVE finger mutations that affect zinc binding are associated with the loss of function of several of these proteins. The interaction of FYVE fingers with PtdIns(3)P may serve three alternative functions: First, to recruit cytosolic FYVE finger proteins to PtdIns(3)P-containing membranes (in concert with accessory molecules); second, to enrich for membrane bound FYVE finger proteins into PtdIns(3)P containing microdomains within the membrane; and third, to modulate the activity of membrane bound FYVE finger proteins.  相似文献   

5.
The Rab5 effector early endosome antigen 1 (EEA1) is a parallel coiled coil homodimer with an N-terminal C(2)H(2) Zn(2+) finger and a C-terminal FYVE domain. Rab5 binds to independent sites at the N and C terminus of EEA1. To gain further insight into the structural determinants for endosome tethering and fusion, we have characterized the interaction of Rab5C with truncation and site-specific mutants of EEA1 using quantitative binding measurements. The results demonstrate that the C(2)H(2) Zn(2+) finger is both essential and sufficient for the N-terminal interaction with Rab5. Although the heptad repeat C-terminal to the C(2)H(2) Zn(2+) finger provides the driving force for stable homodimerization, it does not influence either the affinity or stoichiometry of Rab5 binding. Hydrophobic residues predicted to cluster on a common face of the C(2)H(2) Zn(2+) finger play a critical role in the interaction with Rab5. Although the homologous C(2)H(2) Zn(2+) finger of the Rab5 effector Rabenosyn binds to Rab5 with comparable affinity, the analogous C(2)H(2) Zn(2+) finger of the yeast homologue Vac1 shows no detectable interaction with Rab5, reflecting non-conservative substitutions of critical residues. Large changes in the intrinsic tryptophan fluorescence of Rab5 accompany binding to the C(2)H(2) Zn(2+) finger of EEA1. These observations can be explained by a mode of interaction in which a partially exposed tryptophan residue located at the interface between the switch I and II regions of Rab5 lies within a hydrophobic interface with a cluster of non-polar residues in the C(2)H(2) Zn(2+) finger of EEA1.  相似文献   

6.
Autophagy‐linked FYVE protein (ALFY) is a large, multidomain protein involved in the degradation of protein aggregates by selective autophagy. The C‐terminal FYVE domain of ALFY has been shown to bind phosphatidylinositol 3‐phosphate (PI(3)P); however, ALFY only partially colocalizes with other FYVE domains in cells. Thus, we asked if the FYVE domain of ALFY has distinct membrane binding properties compared to other FYVE domains and whether these properties might affect its function in vivo. We found that the FYVE domain of ALFY binds weakly to PI(3)P containing membranes in vitro. This weak binding is the result of a highly conserved glutamic acid within the membrane insertion loop in the FYVE domain of ALFY that is not present in any other human FYVE domain. In addition, not only does this glutamic acid reduce binding to membranes in vitro and inhibits its targeting to membranes in vivo, but it is also important for the ability of ALFY to clear protein aggregates.  相似文献   

7.
The FYVE domain associates with phosphatidylinositol 3‐phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P‐enriched membranes and membrane‐mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to POPC/POPE/PtdIns(3)P vesicles with a Kd of 49 nM at pH 6.0, however associates ~24 fold weaker at pH 8.0. The decrease in the affinity is primarily due to much faster dissociation of the protein from the bilayers in basic media. Lowering the pH enhances the interaction of the Hrs, RUFY1, Vps27p and WDFY1 FYVE domains with PtdIns(3)P‐containing membranes in vitro and in vivo, indicating that pH‐dependency is a general function of the FYVE finger family. The PtdIns(3)P binding and membrane insertion of the FYVE domain is modulated by the two adjacent His residues of the R(R/K)HHCRXCG signature motif. Mutation of either His residue abolishes the pH‐sensitivity. Both protonation of the His residues and nonspecific electrostatic contacts stabilize the FYVE domain in the lipid‐bound form, promoting its penetration and increasing the membrane residence time. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Signaling by phosphatidylinositol 3-kinases (PI3Ks) is often mediated by proteins which bind PI3K products directly and are localized to intracellular membranes rich in PI3K products. The FYVE finger domain binds with high specificity to PtdIns3P and proteins containing this domain have been shown to be important components of diverse PI3K signaling pathways. The genome of the yeast Saccharomyces cerevisiae encodes five proteins containing FYVE domains, including Pib1p, whose function is unknown. In addition to a FYVE finger motif, the primary structure of Pib1p contains a region rich in cysteine and histidine residues that we demonstrate binds 2 mol eq of zinc, consistent with this region containing a RING structural domain. The Pib1p RING domain exhibited E2-dependent ubiquitin ligase activity in vitro, indicating that Pib1p is an E3 RING-type ubiquitin ligase. Fluorescence microscopy was used to demonstrate that a GFP-Pib1p fusion protein localized to endosomal and vacuolar membranes and deletional analysis of Pib1p domains indicated that localization of GFP-Pib1p is mediated solely by the FYVE domain. These results suggest that Pib1p mediates ubiquitination of a subset of cellular proteins localized to endosome and vacuolar membranes, and they expand the repertoire of PI3K-regulated pathways identified in eukaryotic cells.  相似文献   

9.
FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE domains of unknown structure through the construction of high quality homology models for human FYVE sequences.  相似文献   

10.
Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared.  相似文献   

11.
A growing number of modules including FYVE domains target key signaling proteins to membranes through specific recognition of lipid headgroups and hydrophobic insertion into bilayers. Despite the critical role of membrane insertion in the function of these modules, the structural mechanism of membrane docking and penetration remains unclear. In particular, the three-dimensional orientation of the inserted proteins with respect to the membrane surface is difficult to define quantitatively. Here, we determined the geometry of the micelle penetration of the early endosome antigen 1 (EEA1) FYVE domain by obtaining NMR-derived restraints that correlate with the distances between protein backbone amides and spin-labeled probes. The 5- and 14-doxyl-phosphatidylcholine spin-labels were incorporated into dodecylphosphocholine (DPC) micelles, and the reduction of amide signal intensities of the FYVE domain due to paramagnetic relaxation enhancement was measured. The vector of the FYVE domain insertion was estimated relative to the molecular axis by minimizing the paramagnetic restraints obtained in phosphatidylinositol 3-phosphate (PI3P)-enriched micelles containing only DPC or mixed with phosphatidylserine (PS). Additional distance restraints were obtained using a novel spin-label mimetic of PI(3)P that contains a nitroxyl radical near the threitol group of the lipid. Conformational changes indicative of elongation of the membrane insertion loop (MIL) were detected upon micelle interaction, in which the hydrophobic residues of the loop tend to move deeper into the nonpolar core of micelles. The micelle insertion mechanism of the FYVE domain defined in this study is consistent with mutagenesis data and chemical shift perturbations and demonstrates the advantage of using the spin-label NMR approach for investigating the binding geometry by peripheral membrane proteins.  相似文献   

12.
Phosphatidylinositol 3-phosphate (PI3P) is a key ligand for recruitment of endosomal regulatory proteins in higher eukaryotes. Subsets of these endosomal proteins possess a highly selective PI3P binding zinc finger motif belonging to the FYVE domain family. We have identified a single FYVE domain-containing protein in Plasmodium falciparum which we term FCP. Expression and mutagenesis studies demonstrate that key residues are involved in specific binding to PI3P. In contrast to FYVE proteins in other organisms, endogenous FCP localizes to a lysosomal compartment, the malaria parasite food vacuole (FV), rather than to cytoplasmic endocytic organelles. Transfections of deletion mutants further indicate that FCP is essential for trophozoite and FV maturation and that it traffics to the FV via a novel constitutive cytoplasmic to vacuole targeting pathway. This newly discovered pathway excludes the secretory pathway and is directed by a C-terminal 44-amino acid peptide domain. We conclude that an FYVE protein that might be expected to participate in vesicle targeting in the parasite cytosol instead has a vital and functional role in the malaria parasite FV.  相似文献   

13.
Phosphatidylinositol 3‐phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain‐containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid‐phase marker dextran were retained in abnormally small endosomes in Phafin2‐depleted cells. In yeast two‐hybrid analysis we identified Phafin2 as a novel interactor of the endosomal‐tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid‐phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.  相似文献   

14.
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes.  相似文献   

15.
Recognition of phosphatidylinositol 3-phosphate (Ptdlns(3)P) is crucial for a broad range of cellular signaling and membrane trafficking events regulated by phosphoinositide (PI) 3-kinases. PtdIns(3)P binding by the FYVE domain of human early endosome autoantigen 1 (EEA1), a protein implicated in endosome fusion, involves two beta hairpins and an alpha helix. Specific amino acids, including those of the FYVE domain's conserved RRHHCRQCGNIF motif, contact soluble and micelle-embedded lipid and provide specificity for Ptdlns(3)P over Ptdlns(5)P and Ptdlns, as shown by heteronuclear magnetic resonance spectroscopy. Although the FYVE domain relies on a zinc-binding motif reminiscent of RING fingers, it is distinguished by ovel structural features and its ptdlns(3)P-binding site.  相似文献   

16.
The FYVE domain mediates the recruitment of proteins involved in membrane trafficking and cell signaling to phosphatidylinositol 3-phosphate (PtdIns(3)P)-containing membranes. To elucidate the mechanism by which the FYVE domain interacts with PtdIns(3)P-containing membranes, we measured the membrane binding of the FYVE domains of yeast Vps27p and Drosophila hepatocyte growth factor-regulated tyrosine kinase substrate and their mutants by surface plasmon resonance and monolayer penetration analyses. These measurements as well as electrostatic potential calculation show that PtdIns(3)P specifically induces the membrane penetration of the FYVE domains and increases their membrane residence time by decreasing the positive charge surrounding the hydrophobic tip of the domain and causing local conformational changes. Mutations of hydrophobic residues located close to the PtdIns(3)P-binding pocket or an Arg residue directly involved in PtdIns(3)P binding abrogated the penetration of the FYVE domains into the monolayer, the packing density of which is comparable with that of biological membranes and large unilamellar vesicles. Based on these results, we propose a mechanism of the membrane binding of the FYVE domain in which the domain first binds to the PtdIns(3)P-containing membrane by specific PtdIns(3)P binding and nonspecific electrostatic interactions, which is then followed by the PtdIns(3)P-induced partial membrane penetration of the domain.  相似文献   

17.
FYVE domains are small zinc-finger-like domains found in many proteins that are involved in regulating membrane traffic and have been shown to bind specifically to phosphatidylinositol 3-phosphate (PtdIns-3-P). FYVE domains are thought to recruit PtdIns-3-P effectors to endosomal locations in vivo, where these effectors participate in controlling endosomal maturation and vacuolar protein sorting. We have compared the characteristics of PtdIns-3-P binding by the FYVE domain from Hrs-1 (the hepatocyte growth factor-regulated tyrosine kinase substrate) with those of specific phosphoinositide binding by Pleckstrin homology (PH) domains. Like certain PH domains (such as that from phospholipase C-delta(1)), the Hrs-1 FYVE domain specifically recognizes a single phosphoinositide. However, while phosphoinositide binding by highly specific PH domains is driven almost exclusively by interactions with the lipid headgroup, this is not true for the Hrs-1 FYVE domain. The phospholipase C-delta(1) PH domain shows a 10-fold preference for binding isolated headgroup over its preferred lipid (phosphatidylinositol 4,5-bisphosphate) in a membrane, while the Hrs-1 FYVE domain greatly prefers (more than 50-fold) intact lipid in a bilayer over the isolated headgroup (inositol 1,3-bisphosphate). By contrast with reports for certain PH domains, we find that this preference for membrane binding over interaction with soluble lipid headgroups does not require FYVE domain oligomerization.  相似文献   

18.
Etk/BMX tyrosine kinase is involved in regulation of various cellular processes including proliferation, differentiation, motility, and apoptosis. Through a yeast two-hybrid screening for the effectors of Etk, a new gene family designated as RUFY was identified. The RUFY gene family (RUFY1 and RUFY2) contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. They appear to be homologues of a recently identified mouse Rabip4 (Cormant, M., Mari, M., Galmiche, A., Hofman, P., and Le Marchand-Brustel, Y. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 1637-1642). RUFY proteins are localized predominantly to endosomes as evidenced by their co-localization with early endosome antigen marker (EEA1). Etk interacts with RUFY1 through its SH3 and SH2 domains. RUFY1 is tyrosine-phosphorylated and appears to be a substrate of Etk. The RUFY1 mutant lacking the phosphorylation sites failed to go to the endosomes. Furthermore, overexpression of Etk in COS-1 and B82L cells resulted in increased plasma membrane localization of the epidermal growth factor receptor and delayed its induced endocytosis in COS-1 cells. The effects of Etk were blocked by the FYVE domain of RUFY1. Interestingly, the FYVE domain of RUFY1 is targeted to the plasma membrane through an interaction between its proline-rich motif and the SH3 domain of Etk or possibly some other membrane-associated SH3 domain-containing protein(s), whereas the lipid binding activity of the FYVE domain is not required. Our data suggest that Etk may be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1.  相似文献   

19.
Phosphoinositides (PIs) are crucial lipid components of membranes and are involved in a number of cellular processes through interactions with their effector proteins. Recently, we have established a lipid-protein nanoscale bilayer (nanodisc) containing PIs, hereafter referred to as PI-nanodisc and demonstrated that it could be used for both qualitative and quantitative evaluations of protein-membrane interactions. Here, we report further NMR analyses for obtaining structural insights at the residue-specific level between PI-binding effector protein and PI-nanodisc, using the FYVE domain of early endosome antigen 1 (EEA1), denoted as EEA1 FYVE, and PI(3)P-nanodisc as a model system. We performed a combination of the NMR analyses including chemical shift perturbation, transferred cross-saturation, and paramagnetic relaxation enhancement experiments. These enabled an identification of the interaction surface, structural change, and relative orientation of EEA1 FYVE to the PI(3)P-incorporated lipid bilayer, substantiating that NMR analyses of protein-membrane interactions using nanodisc makes it possible to show the residue-specific interactions in the lipid bilayer environment.  相似文献   

20.
The FYVE domain is a conserved protein motif characterized by its ability to bind with high affinity and specificity to phosphatidylinositol 3-phosphate (PI3P), a phosphoinositide highly enriched in early endosomes. The PI3P polar head group contacts specific amino acid residues that are conserved among FYVE domains. Despite full conservation of these residues, the ability of different FYVE domains to bind to endosomes in cells is highly variable. Here we show that the endosomal localization in intact cells absolutely requires structural features intrinsic to the FYVE domain in addition to the PI3P binding pocket. These features are involved in FYVE domain dimerization and in interaction with the membrane bilayer. These interactions, which are determined by non-conserved residues, are likely to be essential for the temporal and spatial control of protein associations at the membrane-cytosol interface within the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号