首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzyladenine (BA) and KCl were applied to detached cucumber ( Cucumis sativus L. cv. Ohio) cotyledons in continuous light or in the dark with subsequent light. BA brought about an increase in fresh weight and in DNA, RNA and carotenoid contents in both treatments. KCl did not cause an increase in fresh weight and cellular constituents in the dark, but it did result in an increased fresh weight and DNA content after illumination or in continuous light. BA + KCl treatment resulted in increased carotenoid and DNA contents in the dark, and in increases in fresh weight and all cellular constituents upon subsequent exposure to light. The effects of BA and BA + KCl on growth and chlorophyll synthesis decreased with cotyledon age.
BA pretreatment in the dark eliminated the lag phase in chlorophyll synthesis and increased the rate of synthesis. Treatment in continuous light had little effect. KCl did not shorten the lag phase in chlorophyll synthesis, but it stimulated the rate of synthesis in the light. Dark pretreatment with BA + KCl markedly increased the effect of BA on chlorophyll synthesis. Chlorophyll content and fresh weight were higher in cotyledons treated with BA followed by KCl than in cotyledons treated in the reverse order. These results suggest that growth and greening in cucumber cotyledons are primarily controlled by BA and that KCl intensifies the BA effect after irradiation.  相似文献   

2.
研究了CO_2浓度倍增对谷子(Setaria italica (L.)Beauv.)叶片单位鲜重和单位叶面积叶绿素(Chl)和类胡萝卜素(Car)的含量以及PSⅡ功能的影响。结果表明,CO_2浓度倍增能提高拔节期成熟叶片和灌浆期成熟旗叶的Chl和Car的含量,并且能提高这两种叶片PSⅡ反应中心开放部分的比例。然而拔节期叶片和灌浆期旗叶的qN值和PSⅡ总的光化学量子产量,以及 F_v/F_o、F_v/F_m和F_d/F_s的值对CO_2浓度倍增的响应不同,表明CO_2浓度倍增对拔节期叶片光合功能的改善优于灌浆期的旗叶。  相似文献   

3.
Chloroplast development and chlorophyll biosynthesis are co-regulated. Treatment by levulinic acid resulted in a linear relation in both chlorophyll and carotenoid contents, during greening of etiolated French bean leaf discs. Chlorophyll biosynthesis appeared to control that of caroteins. In the presence of levulinic acid; at different levels, photosystem II (PS II) activity decreased when expressed on a chlorophyll basis. Chlorophyllase activity was increased progressively by increasing levulinic acid concentration. Thus, levulinic acid could be used to arrest the light-induced chloroplast development at a desired phase of greening and acts as determinator of chloroplast development in green tissues.  相似文献   

4.
研究了CO_2浓度倍增对垂柳(Salix babylonica L.)和杜仲(Eucommia ulmoides Oliv.)叶片光合色素含量、叶绿体对光能吸收能力和激发能在两个光系统之间分配的影响。结果表明,CO_2 浓度倍增能提高垂柳叶片单位鲜重和单位叶面积叶绿素(Chl)和类胡萝卜素(Car)的含量;提高杜仲Chl含量,降低Car含量。CO_2浓度倍增能提高含等量Chl的叶绿体对光能的吸收和激发能在两个光系统间分配的调节能力。  相似文献   

5.
Effects of doubled CO2 on the contents of chlorophyll and carotenoid per unit fresh weight and per unit area of leaves and PS Ⅱ functions of Setaria italica (L.) Beauv. were studied. The experimental results showed that the contents of chlorophyll and carotenoid, the proportion of opened PS Ⅱ reaction center from the mature leaves at jointing stage and the mature flag leaves at grouting stage were raised with CO2 enrichment. However, qN value and the overall photochemical quantum yield of PS Ⅱ , as well as the Fv/Fo, Fv/Fro and Fd/Fs in the above-mentioned leaves both at the jointing and grouting stage in response to doubled CO2 were different. The final outcome showed that the photosynthetic functions from the leaves at jointing stage improved by doubled CO2 were better than those from the flag leaves at grouting stage.  相似文献   

6.
Under CO2 doubling, the content of chlorophyll and carotenoid per unit fresh weight and er unit area of leaves from weeping willow ( Salix babylonica L. ) as well as chlorophyll of eucommia ( Eucommia ulmoides Oliv. ) were raised, but carotenoid content of eucommia was reduced. The capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PS Ⅱ and PS Ⅰ were also raised by doubled CO2 condition.  相似文献   

7.
The contents of pigments and chlorophyll-protein complexes, fluorescence characteristics and electron transport rate were compared for wheat seedlings grown under different light intensities. Leaves of wheat seedlings grown under low-light intensity (2 klx) had lower chlorophyll and carotenoid contents on leaf area or fresh weight basis, a lower ratio of chlorophyll a/b, lower CPIa and CPI contents in photosynthetic membranes than those of wheat seedlings grown under high-light intensity (20 klx). However, the LHCP content in photosynthetic membranes was higher in the former. The kinetic studies of fluorescence induction showed that wheat seedlings grown under low-light intensity possessed a bigger photosynthetic unit, lower PSⅡ activity and lower efficiency of primary energy conversion than those grown under high-light intensity. Moreover. lower electron transport rate was found in the chloroplasts of the former.  相似文献   

8.
Photomorphogenetic phenomena of excised roots of various plants cultured aseptically in White medium were studied. Continuous white fluorescent light (3000 lx) could generally inhibit extension growth of the primary roots and lateral roots, depress emergence of lateral roots and raise of fresh weight of roots. If greening of the roots could be induced by light, however, the light would increase the fresh weight and formation of lateral roots. Addition of 75 mg/l inositol significantly improved root development. Continuous irradiation stimulated greening of excised roots from some plants (e. g. cucumber, bird rape, India mustard and maize) depending on their hereditary potency. Chlorophyll a, chlorophyll b and carotenoids accumulated slowly. After 1 day or 5 days under the light, chlorophyll or carotenoids could be detected separately. Total amount of plastid pigments per unit of fresh weight in roots was much lower than in leaves. More sucrose applied could pro- mote synthesis of chlorophyll and growth of roots. Chloroplasts appeared in small parenchyma cells located in the stele. They did not come frorn proplastid, but were transformed from a kind of leueoplast-amyloplast. Electron microscopic photographes indicated that starch grains diminished gradually while lamella structure appeared first within enveloped and then filled inner-space of plastid. Many thylakoids stacked to form irregular-shaped gram. These chloroplasts seemed to be different from those in mesophyll. Special inhibitor of carotenoid biosynthesis (norflurazon) prevented chlorophyll synthesis with high efficiency while another photosynthetic inhibitor (motoxuron) increased chlorophyll accumulation in isolated roots.  相似文献   

9.
Since photosystem II (PS II) performs the demanding function of water oxidation using light energy, it is susceptible to photoinactivation during photosynthesis. The time course of photoinactivation of PS II yields useful information about the process. Depending on how PS II function is assayed, however, the time course seems to differ. Here, we revisit this problem by using two additional assays: (1) the quantum yield of oxygen evolution in limiting, continuous light and (2) the flash-induced cumulative delivery of PS II electrons to the oxidized primary donor (P700(+)) in PS I measured as a 'P700 kinetics area'. The P700 kinetics area is based on the fact that the two photosystems function in series: when P700 is completely photo-oxidized by a flash added to continuous far-red light, electrons delivered from PS II to PS I by the flash tend to re-reduce P700(+) transiently to an extent depending on the PS II functionality, while the far-red light photo-oxidizes P700 back to the steady-state concentration. The quantum yield of oxygen evolution in limiting, continuous light indeed decreased in a way that deviated from a single-negative exponential. However, measurement of the quantum yield of oxygen in limiting light may be complicated by changes in mitochondrial respiration between darkness and limiting light. Similarly, an assay based on chlorophyll fluorescence may be complicated by the varying depth in leaf tissue from which the signal is detected after progressive photoinactivation of PS II. On the other hand, the P700 kinetics area appears to be a reasonable assay, which is a measure of functional PS II in the whole leaf tissue and independent of changes in mitochondrial respiration. The P700 kinetics area decreased in a single-negative exponential fashion during progressive photoinactivation of PS II in a number of plant species, at least at functional PS II contents ≥6?% of the initial value, in agreement with the conclusion of Sarvikas et al. (Photosynth Res 103:7-17, 2010). That is, the single-negative-exponential time course does not provide evidence for photoprotection of functional PS II complexes by photoinactivated, connected neighbours.  相似文献   

10.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Recently, it has been suggested (Horton et al. 1992) that aggregation of the light-harvesting a-b complex (LHC II) in vitro reflects the processes which occur in vivo during fluorescence induction and related to the major non-photochemical quenching (qE). Therefore the requirement of this chlorophyll a-b containing protein complex to produce qN was investigated by comparison of two barley mutants either lacking (chlorina f2) or depressed (chlorina104) in LHC II to the wild-type and pea leaves submitted to intermittent light (IL) and during their greening in continuous light. It was observed that qN was photoinduced in the absence of LHC II, i.e. in IL grown pea leaves and the barley mutants. Nevertheless, in these leaves qN had no (IL, peas) or little (barley mutants) inhibitory effect on the photochemical efficiency of QA reduction measured by flash dosage response curves of the chlorophyll fluorescence yield increase induced by a single turn-over flash During greening in continuous light of IL pea leaves, an inhibitory effect on QA photoreduction associated to qN developed as Photosystem II antenna size increased with LHC II synthesis. Utilizing data from the literature on connectivity between PS II units versus antenna size, the following hypothesis is put forward to explain the results summarized above. qN can occur in the core antenna or Reaction Center of a fraction of PS II units and these units will not exhibit variable fluorescence. Other PS II units are quenched indirectly through PS II-PS II exciton transfer which develops as the proportion of connected PS II units increases through LHC II synthesis.  相似文献   

12.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

13.
Chloroplast development and chlorophyll biosynthesis are co-regulated. To understand the mechanism of regulation of chloroplast biogenesis by chlorophyll, development of the photosynthetic apparatus was monitored during greening of etiolated barley leaf discs in the presence of levulinic acid, an inhibitor of chlorophyll biosynthesis. Although not a direct inhibitor of carotenoid biosynthesis, treatment by levulinic acid resulted in a linear reduction in both chlorophyll and carotenoid contents. Chlorophyll biosynthesis appeared to control that of carotenes. In the presence of levulinic acid, photosystem II (PSII) activity decreased while photosystem I (PSI) activity increased when expressed on a chlorophyll basis. However, the activities of both photosystem I and II decreased when expressed on a per plastid basis. As expected, in the presence of low amounts of chlorophyll, the light-harvesting chlorophyll-protein complex II (LHCPII) was not visible in Coomassie-stained gels in 20 m M levulinic acidtreated tissues, but was detected as a faint band by immunoblotting. This small amount of the LHCPII induced significant amounts of grana stacking, which was monitored as an increase in the ratio of variable to maximum fluorescence. When levulinic acid was washed from the leaf discs and the latter allowed to green in its absence, the chlorophyll and carotenoid contents and the photosynthetic activities approached the control values. Levulinic acid could be used to arrest the light-induced chloroplast development at a desired phase of greening and removed by washing the leaves to restore the developmental process without any apparent toxic effect. Results demonstrate that biosynthesis of carotenes is regulated by that of chlorophylls and extremely low amounts of the LHCPII can induce grana stacking.  相似文献   

14.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

15.
通过水培试验,探讨了不同NO3-浓度胁迫及恢复对黄瓜幼苗叶片叶绿素含量、叶绿素荧光参数及ATPase活性的影响.结果表明,胁迫7 d后,高浓度NO3-(168 mmol·L-1)可极显著提高叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量,极显著提高初始荧光(Fo)、Mg ATPase和Ca-ATPase活性,而PSⅡ原初光能转化效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)和PSⅡ光合电子传递量子效率(ΦPSⅡ),却随NO3-浓度的增加而降低.恢复7 d后,所有处理叶绿素和类胡萝卜素含量均低于对照;初始荧光基本都恢复至对照水平;PSⅡ原初光能转化效率和PSⅡ光合电子传递量子效率在NO3-浓度低于126 mmol·L-1时,基本恢复至对照水平,而高于这一水平时,仍显著低于对照;PSⅡ潜在活性在NO3-浓度为42和126 mmol·L-1的处理基本达对照水平,其它处理仍极显著低于对照;Mg-ATPase和Ca-ATPase活性均出现先降低后升高的变化趋势.  相似文献   

16.
The impact of light and its role in Russian wheat aphid, Diuraphis noxia (Mordvilko), damage symptom formation, and photosynthetic capacity in 'Arapahoe' wheat (Triticum aestivum L.) were examined. After 72 h under continuous dark or continuous light regimes, the number of aphids (nymphs), leaf rolling and chlorosis ratings, fresh leaf weight, and chlorophyll contents were recorded. Photosynthetic rates, chlorophyll a, kinetics and chlorophyll extractions also were determined. Aphid infestation caused significant reductions in plant height, fresh weight, gas exchange, and chlorophyll fluorescence only under continuous light. Under the 72 h continuous dark regime, aphid infestation did not cause either damage symptom formation or reduction in plant growth or metabolism (photosynthesis). Furthermore, significantly more D. noxia nymphs were produced under continuous light condition than continuous dark. Our results demonstrate that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and chlorotic streaks) on susceptible wheat seedlings is a light-activated process, even though the elicitor of the plant damage symptoms is aphid feeding.  相似文献   

17.
The appearance and development of photosynthetic activity, and the accumulation of chlorophylls, carotenoids and quinones, was investigated in etiolated barley shoots (Hordeum vulgare L. cv. Villa) during greening in flash light, periodic light-dark cycles, and continuous white light. Greening and the development of photosynthetic activity was delayed in flash and periodic light compared to continuous white light. Photosystem II activity occurred after 6 light-dark cycles and increased continuously during greening. After 3 h greening in continuous white light, photosystem II activity appeared with a very high rate and decreased to that of a green leaf after 50 h greening. Parallel to the development of photosynthetic activity, light stimulated the biosynthesis of prenyllipids. Moreover, chlorophylls and those carotenoids and quinones that are contained in etioplasts in relatively small amounts, were particularly enhanced in their biosynthesis. Chlorophyll a was synthesized without a lag phase during greening in flash light, whereas a 2 h lag phase occurred in continuous white light. In all three modes of illumination the formation of chlorophyll a exceeded that of chlorophyll b. After 4 flashes and 2 light-dark cycles, chlorophyll b could be detected with a very high initial a/b ratio. Higher chlorophyll a/b ratios were reached after 200 flashes (a/b=10.9) and 50 light-dark cycles (a/b=6.6) than after 50 h continuous white light (a/b=3.3). The formation of carotenes, lutein, violaxanthin and neoxanthin was also enhanced by light. This was also confirmed for plast-ouinone-9. ?-tocopherol,α-tocoquinone and phylloquinone. A comparison of the carotenoid and quinone composition of the differentiating thylakoid membrane before and after onset of photosynthesis, reveals that the photosynthetic membrane is already equipped with photosynthetic pigments and quinones before the appearance of photosystem II activity. It is concluded that during development of the photo-synthetic apparatus the thylakoid membrane with its structural and functional constituents is formed first. In a second and slower process the water splitting enzyme system and enzymes of the Calvin cycle are activated.  相似文献   

18.
盐胁迫下CO2加倍对春小麦一些光合功能的影响   总被引:18,自引:0,他引:18       下载免费PDF全文
 研究了在盐胁迫下CO2浓度加倍对春小麦(Triticum aestivum)青323光合色素含量和一些光合功能的影响。结果表明,盐胁迫降低春小麦叶片单位鲜重叶绿素(Chl)和类胡萝卜素(Car)的含量、叶绿体对光能的吸收能力,Mg2+对两个光系统(PSⅡ和PSⅠ)之间激发能分配的调节能力,以及荧光猝灭速率(△FV/T)。然而,CO2加倍有提高上述各参数的作用,表明高CO2浓度能减轻盐胁迫对光合功能的不利效应。  相似文献   

19.
The influence of phytohormones on chlorophyll and carotenoid formation during the greening of irradiated dark grown wheat leaves (Triticum aestivum L. cv. Starke II Weibull) was studied. Leaves were floated on solutions of abscisic acid, gibberellic acid and kinetin for 24 h. The chlorophyll and carotenoid contents were determined during a subsequent period of 48 h of continuous irradiation. Leaves treated with abscisic acid showed a longer lag phase and a lower rate of accumulation of chlorophyll as compared to the control than did leaves treated with gibberellic acid and kinetin. The carotenoid content was low both in leaves treated with abscisic acid and in those treated with gibberellic acid. Treatment with abscisic acid lowered the protochlorophyllide regeneration after a saturating light flash while gibberellic acid as well as kinetin had no effect. The influence of ABA was partly dependent on an increase of the wounded part of the cut leaf segments. The accumulation of protochlorophyllide in leaves treated with δ-aminolevulinic acid was not affected by the different hormonal treatments. These results suggest that the main effect of abscisic acid is probably outside the chloroplast, i.e. on the formation or transport of δ-aminolevulinic acid.  相似文献   

20.
Song XX  Zheng CS  Sun X  Ma HY 《应用生态学报》2011,22(7):1737-1742
以切花菊品种‘白马’为材料,采用盆栽试验研究了控释肥对菊花叶片叶绿素荧光参数、叶绿素和养分含量及观赏品质的影响.结果表明:未施肥处理(对照)的菊花叶片PSⅡ原初光化学效率(Fv/Fm)、PSⅡ潜在光化学活性(Fv/Fo)和PSⅡ量子效率(ΦPSⅡ)与施肥处理相比显著下降;两种普通复合肥CCFA(N∶P∶K=20∶8∶10)和CCFB(N∶P∶K=14∶14∶14)处理的Fv/Fm、Fv/Fo和ΦPSⅡ在前期(30~60 d)比两个控释肥CRFA(N∶P∶K=20∶8∶10)和CRFB(N∶P∶K=14∶14∶14)处理有所增高,但在中后期(75~120 d)比两个控释肥处理显著下降.CRFA处理的Fv/Fm、ΦPSⅡ和光化学猝灭系数(qP)比CRFB处理有所增高.两种控释肥处理的非化学猝灭系数(NPQ)与对照和两种普通复合肥处理相比显著下降.各处理叶绿素含量变化规律与Fv/Fm、Fv/Fo和ΦPSⅡ基本一致.切花采收期CRFA和CRFB处理的叶片N、P、K含量以及花梗长、花梗粗、花径、花鲜质量和干质量均高于CCFA、CCFB和对照,而且CRFA处理的花鲜质量和干质量比CRFB处理显著增高.表明控释肥可以通过提...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号