首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation.  相似文献   

4.
Human papillomavirus type 16 E7 oncoprotein associates with E2F6   总被引:4,自引:0,他引:4  
  相似文献   

5.
6.
The epidermis consists of a squamous epithelium continuously replenished by committed stem cells, which can either self-renew or differentiate. We demonstrated previously that E2F genes are differentially expressed in developing epidermis (Dagnino, L., Fry, C. J., Bartley, S. M., Farnham, P., Gallie, B. L., and Phillips, R. A. (1997) Cell Growth Differ. 8, 553-563). Thus, we hypothesized that various E2F proteins likely play distinct growth regulatory roles in the undifferentiated stem cells and in terminally differentiated keratinocytes. To further understand the function of E2F genes in epidermal morphogenesis, we have examined the expression, regulation, and protein-protein interactions of E2F factors in undifferentiated cultured murine primary keratinocytes or in cells induced to differentiate with Ca(2+) or BMP-6 (bone morphogenetic protein 6). We find similar patterns of E2F regulation with both differentiating agents and demonstrate a switch in expression from E2F-1, -2, and -3 in undifferentiated, proliferating cells to E2F-5 in terminally differentiated keratinocytes. Inhibition of keratinocyte proliferation by transforming growth factor-beta1 did not enhance E2F-5 protein levels, suggesting that this response is specific to differentiation rather than reversible cell cycle withdrawal. E2F-5 up-regulation is also accompanied by formation of heteromeric nuclear complexes containing E2F5, p130, and histone deacetylase (HDAC) 1. Overexpression of E2F5 specifically inhibited DNA synthesis in undifferentiated keratinocytes in an HDAC-dependent manner, suggesting that E2F-5.p130.HDAC1 complexes are likely involved in the permanent withdrawal from the cell cycle of keratinocytes responding to differentiation stimuli.  相似文献   

7.
E2F activity is critical for the control of the G(1) to S phase transition. We show that the combined loss of E2F1 and E2F2 results in profound effects on hematopoietic cell proliferation and differentiation, as well as increased tumorigenesis and decreased lymphocyte tolerance. The loss of E2F1 and E2F2 impedes B-cell differentiation, and hematopoietic progenitor cells in the bone marrow of mice lacking E2F1 and E2F2 exhibit increased cell cycling. Importantly, we show that E2F1 and E2F2 double-knockout T cells exhibit more rapid entry into S phase following antigenic stimulation. Furthermore, T cells lacking E2F1 and E2F2 proliferate much more extensively in response to subthreshold antigenic stimulation. Consistent with these observations, E2F1/E2F2 mutant mice are highly predisposed to the development of tumors, and some mice exhibit signs of autoimmunity.  相似文献   

8.
9.
10.
Early studies suggested both TR3 orphan receptor (TR3) and apoptosis mediator E2F1 might play an important role in mediating prostate cancer cell apoptosis. Their linkage and relationship, however, remain unclear. Here we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) could induce cell apoptosis via induction of TR3 and E2F1 expression in LNCaP prostate cancer cells. Addition of antisense E2F1 could partially rescue the TR3-mediated cell apoptosis, and transfection of the TR3 dominant-negative plasmid could block the TR3-induced E2F1 expression. These data suggest that TPA is able to induce LNCaP cell apoptosis via induction of TR3 resulting in the induction of E2F1. Promoter reporter assays show that TR3 can induce E2F1 expression via binding to the TR3 response element (TR3RE) in the E2F1 promoter -316 to -324 bp region. TR3 can bind specifically to this TR3RE with a Kd of 6.29 nm, and mutations of this E2F1-TR3RE can partially block the TR3-mediated E2F1 expression. Taken together, these data suggest that TPA is able to induce cell apoptosis via a TPA --> TR3 --> E2F1 --> apoptosis pathway in LNCaP cells. Further studies of how to modulate this pathway may allow us to better understand how to control the prostate cancer growth.  相似文献   

11.
Patients with cervical cancer have abnormal cell proliferation and invasion after many years of latency. However, the precise mechanisms remain unclear. Mitogen- and stress-activated kinase 2 (MSK2) is a serine/threonine kinase which displays a phenotype that promotes tumor growth and metastasis in many different types of tumors. The aim of the present study was to determine the effects of MSK2 on the proliferation of cervical cancer cells and elucidate the signaling pathways through which MSK2 exerts its effects in the pathogenesis of squamous cell carcinoma (SCC). Our results confirmed that MSK2 expression was significantly upregulated in cervical cancer cells both in vivo and in vitro. We further found that the expression patterns of paired-box gene 8 (PAX8) and MSK2 were positively correlated in cervical cancer specimens. Moreover, MSK2 knockdown inhibited the phosphorylation of PAX8 and retinoblastoma protein (RB), and suppressed the sequential expressions of cell proliferation factors E2F1 and cyclin A2, resulting in the inhibition of SCC cell proliferation and tumor formation. Thus, this study demonstrates that MSK2 has oncogenic effects in the formation and development of SCC via the PAX8/RB-E2F1/cyclin A2 axis.  相似文献   

12.
13.
We have previously found that loss of C/EBPalpha in hepatocytes of newborn livers leads to increased proliferation, to a reduction in p21 protein levels and to an induction of S phase-specific E2F/p107 complexes. In this paper, we investigated C/EBPalpha-dependent regulation of E2F complexes in a well-characterized cell line, 3T3-L1, and in stable transformants that conditionally express C/EBPalpha. C/EBPalpha and C/EBPbeta proteins are induced in 3T3-L1 preadipocytes during differentiation with different kinetics and potentially may regulate E2F/Rb family complexes. In pre-differentiated cells, three E2F complexes are observed: cdk2/E2F/p107, E2F/p130 and E2F4. cdk2/E2F/p107 complexes are induced in nuclear extracts of 3T3-L1 cells during mitotic expansion, but are not detectable in nuclear extracts at later stages of 3T3-L1 differentiation. The reduction in E2F/p107 complexes is associated with elevation of C/EBPalpha, but is independent of C/EBPbeta expression. Bacterially expressed, purified His-C/EBPalpha is able to disrupt E2F/p107 complexes that are observed at earlier stages of 3T3-L1 differentiation. C/EBPbeta, however, does not disrupt E2F/p107 complexes. A short C/EBPalpha peptide with homology to E2F is sufficient to bring about the disruption of E2F/p107 complexes from 3T3-L1 cells in vitro. Induction of C/EBPalpha in stable 3T3-L1 clones revealed that C/EBPalpha causes disruption of p107/E2F complexes in these cells. In contrast, E2F/p130 complexes are induced in cells expressing C/EBPalpha. Our data suggest that induction of p130/E2F complexes by C/EBPalpha occurs via up-regulation of p21, which, in turn, leads to association with and inhibition of, cdk2 kinase activity. The reduction in cdk2 kinase activity correlates with alterations of p130 phosphorylation and with induction of p130/E2F complexes in 3T3-L1 stable clones. Our data suggest two pathways of C/EBPalpha-dependent regulation of E2F/Rb family complexes: disruption of S phase-specific E2F/p107 complexes and induction of E2F/p130 complexes.  相似文献   

14.
Terminally differentiated cells in Drosophila melanogaster wings and eyes are largely resistant to proliferation upon deregulation of either E2F or cyclin E (CycE), but exogenous expression of both factors together can bypass cell cycle exit. In this study, we show this is the result of cooperation of cell cycle control mechanisms that limit E2F-CycE positive feedback and prevent cycling after terminal differentiation. Aberrant CycE activity after differentiation leads to the degradation of E2F activator complexes, which increases the proportion of CycE-resistant E2F repressor complexes, resulting in stable E2F target gene repression. If E2F-dependent repression is lost after differentiation, high anaphase-promoting complex/cyclosome (APC/C) activity degrades key E2F targets to limit cell cycle reentry. Providing both CycE and E2F activities bypasses exit by simultaneously inhibiting the APC/C and inducing a group of E2F target genes essential for cell cycle reentry after differentiation. These mechanisms are essential for proper development, as evading them leads to tissue outgrowths composed of dividing but terminally differentiated cells.  相似文献   

15.
Androgens exert a peculiar biphasic dose-dependent influence on the proliferation of LNCaP cells, a widely used model to study androgen effects on prostate cancer cells. Low concentrations of androgen stimulate proliferation, but high concentrations inhibit proliferation and induce strong expression of differentiation markers. In order to gain more insight into the molecular mechanisms that underlie these changes we studied the influence of a wide concentration range of the synthetic androgen R1881 on several cell cycle- and differentiation-related parameters. Low concentrations (0.1 nM), known to promote LNCaP cell proliferation, induce an increase of Retinoblastoma protein phosphorylation, accompanied by an increase of E2F-1 protein levels and E2F activity and by increased expression of the E2F-target gene products E2F-1 and cyclin A. High concentrations of R1881 (10 nM) induce strong expression of the differentiation marker prostate-specific antigen. Retinoblastoma protein is largely hypophosphorylated, resulting in low E2F activity and low concentrations of E2F-1 and cyclin A mRNA. Finally, there is a strong increase of p27(KIP1) protein, but not of p27(KIP1) mRNA. These results indicate that the biphasic dose response of LNCaP proliferation to androgen is closely reflected in Rb phosphorylation, E2F activity and p27(KIP1) protein expression.  相似文献   

16.
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA‐34a (miR‐34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR‐34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild‐type p53 expression. In normal HKCs, the pro‐differentiation effects of increased p53 activity or UVB exposure are miR‐34a‐dependent, and increased miR‐34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR‐34a function, is a direct target of this miRNA in HKCs, and SIRT6 down‐modulation is sufficient to reproduce the miR‐34a pro‐differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR‐34a in normal keratinocytes and keratinocyte‐derived tumours.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号