首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Motivation: The proliferation of public data repositories createsa need for meta-analysis methods to efficiently evaluate, integrateand validate related datasets produced by independent groups.A t-based approach has been proposed to integrate effect sizefrom multiple studies by modeling both intra- and between-studyvariation. Recently, a non-parametric ‘rank product’method, which is derived based on biological reasoning of fold-changecriteria, has been applied to directly combine multiple datasetsinto one meta study. Fisher's Inverse 2 method, which only dependson P-values from individual analyses of each dataset, has beenused in a couple of medical studies. While these methods addressthe question from different angles, it is not clear how theycompare with each other. Results: We comparatively evaluate the three methods; t-basedhierarchical modeling, rank products and Fisher's Inverse 2test with P-values from either the t-based or the rank productmethod. A simulation study shows that the rank product method,in general, has higher sensitivity and selectivity than thet-based method in both individual and meta-analysis, especiallyin the setting of small sample size and/or large between-studyvariation. Not surprisingly, Fisher's 2 method highly dependson the method used in the individual analysis. Application toreal datasets demonstrates that meta-analysis achieves morereliable identification than an individual analysis, and rankproducts are more robust in gene ranking, which leads to a muchhigher reproducibility among independent studies. Though t-basedmeta-analysis greatly improves over the individual analysis,it suffers from a potentially large amount of false positiveswhen P-values serve as threshold. We conclude that careful meta-analysisis a powerful tool for integrating multiple array studies. Contact: fxhong{at}jimmy.harvard.edu Supplementary information: Supplementary data are availableat Bioinformatics online. Associate Editor: David Rocke Present address: Department of Biostatistics and ComputationalBiology, Dana-Farber Cancer Institute, Harvard School of PublicHealth, 44 Binney Street, Boston, MA 02115, USA.  相似文献   

2.
SUMMARY: OrderedList is a Bioconductor compliant package for meta-analysis based on ordered gene lists like those resulting from differential gene expression analysis. Our package quantifies the similarity between gene lists. The significance of the similarity score is estimated from random scores computed on perturbed data. OrderedList illustrates list similarity in intuitive plots and determines the score-driving genes for further analysis. AVAILABILITY: http://www.bioconductor.org CONTACT: claudio.lottaz@molgen.mpg.de SUPPLEMENTARY INFORMATION: Please visit our webpage on http://compdiag.molgen.mpg.de/software.  相似文献   

3.
An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.  相似文献   

4.

Background  

Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).  相似文献   

5.
6.
In cDNA indexing, differentially expressed genes are identified by the display of specific, corresponding subsets of cDNA. Subdivision of the cDNA population is achieved by the sequence-specific ligation of adapters to the overhangs created by class IIS restriction enzymes. However, inadequate specificity of ligation leads to redundancy between different adapter subsets. We evaluate the incidence of mismatches between adapters and class IIS restriction fragments during ligation and describe a modified set of conditions that improves ligation specificity. The improved protocol reduces redundancy between amplified cDNA subsets, which leads to a lower number of bands per lane of the differential display gel, and therefore simplifies analysis. We confirm the validity of this revised protocol by identifying five differentially expressed genes in mouse duodenum and ileum.  相似文献   

7.
MOTIVATION: A primary objective of microarray studies is to determine genes which are differentially expressed under various conditions. Parametric tests, such as two-sample t-tests, may be used to identify differentially expressed genes, but they require some assumptions that are not realistic for many practical problems. Non-parametric tests, such as empirical Bayes methods and mixture normal approaches, have been proposed, but the inferences are complicated and the tests may not have as much power as parametric models. RESULTS: We propose a weakly parametric method to model the distributions of summary statistics that are used to detect differentially expressed genes. Standard maximum likelihood methods can be employed to make inferences. For illustration purposes the proposed method is applied to the leukemia data (training part) discussed elsewhere. A simulation study is conducted to evaluate the performance of the proposed method.  相似文献   

8.
9.
MOTIVATION: An important goal in analyzing microarray data is to determine which genes are differentially expressed across two kinds of tissue samples or samples obtained under two experimental conditions. Various parametric tests, such as the two-sample t-test, have been used, but their possibly too strong parametric assumptions or large sample justifications may not hold in practice. As alternatives, a class of three nonparametric statistical methods, including the empirical Bayes method of Efron et al. (2001), the significance analysis of microarray (SAM) method of Tusher et al. (2001) and the mixture model method (MMM) of Pan et al. (2001), have been proposed. All the three methods depend on constructing a test statistic and a so-called null statistic such that the null statistic's distribution can be used to approximate the null distribution of the test statistic. However, relatively little effort has been directed toward assessment of the performance or the underlying assumptions of the methods in constructing such test and null statistics. RESULTS: We point out a problem of a current method to construct the test and null statistics, which may lead to largely inflated Type I errors (i.e. false positives). We also propose two modifications that overcome the problem. In the context of MMM, the improved performance of the modified methods is demonstrated using simulated data. In addition, our numerical results also provide evidence to support the utility and effectiveness of MMM.  相似文献   

10.
11.
An exciting biological advancement over the past few years is the use of microarray technologies to measure simultaneously the expression levels of thousands of genes. The bottleneck now is how to extract useful information from the resulting large amounts of data. An important and common task in analyzing microarray data is to identify genes with altered expression under two experimental conditions. We propose a nonparametric statistical approach, called the mixture model method (MMM), to handle the problem when there are a small number of replicates under each experimental condition. Specifically, we propose estimating the distributions of a t -type test statistic and its null statistic using finite normal mixture models. A comparison of these two distributions by means of a likelihood ratio test, or simply using the tail distribution of the null statistic, can identify genes with significantly changed expression. Several methods are proposed to effectively control the false positives. The methodology is applied to a data set containing expression levels of 1,176 genes of rats with and without pneumococcal middle ear infection.  相似文献   

12.
Qi Y  Sun H  Sun Q  Pan L 《Genomics》2011,97(5):326-329
Microarrays allow researchers to examine the expression of thousands of genes simultaneously. However, identification of genes differentially expressed in microarray experiments is challenging. With an optimal test statistic, we rank genes and estimate a threshold above which genes are considered to be differentially expressed genes (DE). This overcomes the embarrassing shortcoming of many statistical methods to determine the cut-off values in ranking analysis. Experiments demonstrate that our method is a good performance and avoids the problems with graphical examination and multiple hypotheses testing that affect alternative approaches. Comparing to those well known methods, our method is more sensitive to data sets with small differentially expressed values and not biased in favor of data sets based on certain distribution models.  相似文献   

13.
Statistical methods for ranking differentially expressed genes   总被引:2,自引:1,他引:2  
In the analysis of microarray data the identification of differential expression is paramount. Here I outline a method for finding an optimal test statistic with which to rank genes with respect to differential expression. Tests of the method show that it allows generation of top gene lists that give few false positives and few false negatives. Estimation of the false-negative as well as the false-positive rate lies at the heart of the method.  相似文献   

14.
MOTIVATION: It is important to consider finding differentially expressed genes in a dataset of microarray experiments for pattern generation. RESULTS: We developed two methods which are mainly based on the q-values approach; the first is a direct extension of the q-values approach, while the second uses two approaches: q-values and maximum-likelihood. We present two algorithms for the second method, one for error minimization and the other for confidence bounding. Also, we show how the method called Patterns from Gene Expression (PaGE) (Grant et al., 2000) can benefit from q-values. Finally, we conducted some experiments to demonstrate the effectiveness of the proposed methods; experimental results on a selected dataset (BRCA1 vs BRCA2 tumor types) are provided. CONTACT: alhajj@cpsc.ucalgary.ca.  相似文献   

15.

Background  

Gene expression is governed by complex networks, and differences in expression patterns between distinct biological conditions may therefore be complex and multivariate in nature. Yet, current statistical methods for detecting differential expression merely consider the univariate difference in expression level of each gene in isolation, thus potentially neglecting many genes of biological importance.  相似文献   

16.

Background  

The biomedical community is rapidly developing new methods of data analysis for microarray experiments, with the goal of establishing new standards to objectively process the massive datasets produced from functional genomic experiments. Each microarray experiment measures thousands of genes simultaneously producing an unprecedented amount of biological information across increasingly numerous experiments; however, in general, only a very small percentage of the genes present on any given array are identified as differentially regulated. The challenge then is to process this information objectively and efficiently in order to obtain knowledge of the biological system under study and by which to compare information gained across multiple experiments. In this context, systematic and objective mathematical approaches, which are simple to apply across a large number of experimental designs, become fundamental to correctly handle the mass of data and to understand the true complexity of the biological systems under study.  相似文献   

17.
pcaMethods is a Bioconductor compliant library for computing principal component analysis (PCA) on incomplete data sets. The results can be analyzed directly or used to estimate missing values to enable the use of missing value sensitive statistical methods. The package was mainly developed with microarray and metabolite data sets in mind, but can be applied to any other incomplete data set as well. AVAILABILITY: http://www.bioconductor.org  相似文献   

18.

Background  

Studies of differential expression that use Affymetrix GeneChip arrays are often carried out with a limited number of replicates. Reasons for this include financial considerations and limits on the available amount of RNA for sample preparation. In addition, failed hybridizations are not uncommon leading to a further reduction in the number of replicates available for analysis. Most existing methods for studying differential expression rely on the availability of replicates and the demand for alternative methods that require few or no replicates is high.  相似文献   

19.
This paper compares the type I error and power of the one- and two-sample t-tests, and the one- and two-sample permutation tests for detecting differences in gene expression between two microarray samples with replicates using Monte Carlo simulations. When data are generated from a normal distribution, type I errors and powers of the one-sample parametric t-test and one-sample permutation test are very close, as are the two-sample t-test and two-sample permutation test, provided that the number of replicates is adequate. When data are generated from a t-distribution, the permutation tests outperform the corresponding parametric tests if the number of replicates is at least five. For data from a two-color dye swap experiment, the one-sample test appears to perform better than the two-sample test since expression measurements for control and treatment samples from the same spot are correlated. For data from independent samples, such as the one-channel array or two-channel array experiment using reference design, the two-sample t-tests appear more powerful than the one-sample t-tests.  相似文献   

20.

Background

One aspect in which RNA sequencing is more valuable than microarray-based methods is the ability to examine the allelic imbalance of the expression of a gene. This process is often a complex task that entails quality control, alignment, and the counting of reads over heterozygous single-nucleotide polymorphisms. Allelic imbalance analysis is subject to technical biases, due to differences in the sequences of the measured alleles. Flexible bioinformatics tools are needed to ease the workflow while retaining as much RNA sequencing information as possible throughout the analysis to detect and address the possible biases.

Results

We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility of RNA sequencing. The visualization features can reveal notable, non-trivial allelic imbalance behavior over specific regions, such as exons.

Conclusions

The software provides a complete framework to perform allelic imbalance analyses of aligned RNA sequencing data, from detection to visualization, within the robust and versatile management class, ASEset.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0620-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号