首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The interpretation of protein structures: estimation of static accessibility   总被引:212,自引:0,他引:212  
A program is described for drawing the van der Waal's surface of a protein molecule. An extension of the program permits the accessibility of atoms, or groups of atoms, to solvent or solute molecules of specified size to be quantitatively assessed. As defined in this study, the accessibility is proportional to surface area. The accessibility of all atoms in the twenty common amino acids in model tripeptides of the type Ala-X-Ala are given for defined conformation. The accessibilities are also given for all atoms in ribonuclease-S, lysozyme and myogoblin. Internal cavities are defined and discussed. Various summaries of these data are provided. Forty to fifty per cent of the surface area of each protein is occupied by non-polar atoms. The actual numerical results are sensitive to the values chosen for the van der Waal's radii of the various groups. Since there is uncertainty over the correct values for these radii, the derived numbers should only be used as a qualitative guide at this stage.  相似文献   

2.
The non-polar component of the potential of mean force of dimerization of alanine dipeptide has been calculated in explicit solvent by free energy perturbation. We observe that the calculated PMF is inconsistent with a non-polar hydration free energy model based solely on the solute surface area. The non-linear behavior of the solute-solvent van der Waals energy is primarily responsible for the non-linear dependence of the potential of mean force with respect to the surface area. The calculated potential of mean force is reproduced by an implicit solvent model based on a solvent continuum model for the solute-solvent van der Waals interaction energy and the surface area for the work of forming the solute cavity.  相似文献   

3.
4.
The present paper is a systematic first approach to the problem of solvation thermodynamics of biomolecules. Most previous approaches have been only crude estimates of solvent contributions, and have simply assessed solvation free energy as proportional to surface areas. Here we estimate the various contributions and divide them into (a) hard-core interactions dependent upon the entire volume of solute and (b) the remainder of interactions manifested through surfaces, such as van der Waals, charge-charge, or hydrogen bonds. We have estimated the work to create a cavity with scaled-particle theory (SPT), the van der Waals interactions on the surface, and hydrogen bonds between the surface and the solvent. The conclusion here is that this latter term is the largest component of the solvation free energy of proteins. From estimates on nine diverse proteins, it is clear that the larger the protein, the more dominant is the hydrogen-bond term. In the next paper, we indicate that correlations between hydrogen-bonding groups on the surfaces could increase the magnitude of the hydrogen-bond contribution.  相似文献   

5.
The structure of the methyl-alpha-D-mannopyranoside-LOL I complex has been solved by the molecular replacement method using the refined saccharide-free LOL I coordinates as starting model. The methyl-alpha-D-mannopyranoside-LOL I complex was refined by simulated annealing using the program X-PLOR. The final R-factor value is 0.182 [Fo greater than 1 sigma(Fo)]. The isostructural methyl-alpha-D-glucopyranoside-LOL I complex was refined by X-Ray coupled energy minimization using the methyl-alpha-D-mannopyranoside-LOL I structure as a starting model to an R factor of 0.179 (all data). In both crystal forms, each dimer binds two molecules of sugar in pockets found near the calcium ions. The two saccharide moieties, which are in the C1 chair conformation, establish the same hydrogen bond pattern with the lectin. However, the van der Waals contacts are different between the O2, C2, C6, and O6 atoms of the two molecules and the backbone atoms of residues 208-211. Mannose, due to its axial C2 conformation, encloses the backbone atoms of the protein in a clamplike way. Van der Waals energy calculations suggest that this better complementarity of the mannoside molecule with the lectin could explain its higher affinity for isolectin I.  相似文献   

6.
7.
A detailed and rule-based side-chain modelling procedure for globular proteins is presented. It uses the conformational information contained in a homologous (template) structure as a starting point and includes recipes for atom placement and for checking and improving the atomic positions. The scheme does not rely on intuitive judgements or visual examination of the model during construction or refinement. It comprises four stages; the first three are relatively simple and the fourth is more complex. In the first stage, initial conformations for as many atoms as possible are transferred from the template structure based on the application of trends reported previously. Second, these trends are used to correct poor van der Waals overlaps. Third, the remaining side-chains atoms (those for which no information is contained in the template) are placed by evaluating their rigid rotation, van der Waals surfaces. The fourth stage consists of a hierarchial series of conformational checks. They involve the evaluation of individual residue energies in the absence and presence of the rest of the protein relative to statistical trends observed in the template structure, the comparison of hydrogen-bonding patterns and side-chain accessibilities in the model and template and brief energy minimization followed by an evaluation of the rigid rotation potential energy surfaces of each side-chain. The checks pinpoint "incorrectly" modelled side-chains, suggest conformational changes and provide a means for determining the portions of the model that are likely to be correct and those likely to be in error. The procedure developed in the paper is tested by modelling the side-chains of the C-terminal lobe of the aspartyl proteinase rhizopuspepsin, using the rhizopuspepsin backbone and the homologous protein, penicillopepsin, as a template for the side-chains. The resultant model was compared to the high-resolution X-ray structure of rhizopuspepsin. Using penicillopepsin data only (stage I), 58% of the chi 1 dihedrals and 44% of the chi 2 dihedrals were modelled correctly. Once poor van der Waals overlaps had been corrected and all of the atoms had been placed (stages II and III), 86% of the chi 1 dihedrals and 75% of the chi 2 dihedrals were correct. After the refinement had been completed (stage IV), 92% of the chi 1 dihedrals and 81% of the chi 2 dihedrals were correctly positioned.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Metropolis Monte Carlo (MMC) loop refinement has been performed on the three extracellular loops (ECLs) of rhodopsin and opsin-based homology models of the thyroid-stimulating hormone receptor transmembrane domain, a class A type G protein-coupled receptor. The Monte Carlo sampling technique, employing torsion angles of amino acid side chains and local moves for the six consecutive backbone torsion angles, has previously reproduced the conformation of several loops with known crystal structures with accuracy consistently less than 2?Å. A grid-based potential map, which includes van der Waals, electrostatics, hydrophobic as well as hydrogen-bond potentials for bulk protein environment and the solvation effect, has been used to significantly reduce the computational cost of energy evaluation. A modified sigmoidal distance-dependent dielectric function has been implemented in conjunction with the desolvation and hydrogen-bonding terms. A long high-temperature simulation with 2?kcal/mol repulsion potential resulted in extensive sampling of the conformational space. The slow annealing leading to the low-energy structures predicted secondary structure by the MMC technique. Molecular docking with the reported agonist reproduced the binding site within 1.5?Å. Virtual screening performed on the three lowest structures showed that the ligand-binding mode in the inter-helical region is dependent on the ECL conformations.  相似文献   

9.
10.
Molecular dynamics simulations were used to investigate the aggregation of two partially overlapped graphene sheets in hexane, dodecane and eicosane. When partially overlapped graphene sheets are adjacent to one another, they will expel the adsorbed layers of the solvent molecules on the graphene surface, and the amount of overlap will increase. When the overlapped regions of the graphene sheets are separated by solvent molecules, they cannot expel the adsorption layers between them, and so the sheets remain separated. The driving force for aggregation is the van der Waals interaction between the two graphene sheets, while the van der Waals interaction between the graphene sheets and the solvent molecules inhibits graphene aggregation. The diffusion rate of the hydrocarbon molecules with shorter chain lengths is higher. Thus, they diffuse faster during graphene aggregation, which leads to a higher rate of graphene overlapping in the shorter hydrocarbons. This work provides useful insights into graphene aggregation in linear hydrocarbon solvents of varying lengths at the nanoscale.  相似文献   

11.
High moisture content is a main characteristic of low-rank coal, such as lignite. Numerous oxygen containing functional groups in lignite make it represent some special properties, and these functional groups affect the adsorption mechanisms of water molecules on lignite surface. This study reports some typical water?·?·?·?lignite conformations, along with a detailed analysis of the geometry, electrostatic potential distribution, reduced density gradient of interaction, and interaction energy decomposition. The results show that water molecules tend to aggregate around functional groups, and hydrogen bonds play a dominant role in the interaction. The adsorption energy of water cluster on lignite surface is larger than that of isolated water molecule, a good linear relationship between the interaction distance and adsorption energy of layers has been found. Since water is a polar molecule, the local minima and maxima of electrostatic potential in conformations increase along with more water adsorbing on lignite surface. Reduced density gradient analysis shows that H-bonds, van der Waals interaction, and a little steric make up the interaction between water cluster and lignite molecule. In these studied conformations which mainly are H-bond complexes, electrostatic and exchange repulsion play a dominant role, whereas polarization and dispersion make relatively small contribution to the interaction. Attractive and repulsive interaction both affect the stability of water?·?·?·?lignite conformations.  相似文献   

12.
Elucidating the principles governing anesthetic-protein interactions requires structural determinations at high resolutions not yet achieved with ion channels. Protein kinase C (PKC) activity is modulated by general anesthetics. We solved the structure of the phorbol-binding domain (C1B) of PKCδ complexed with an ether (methoxymethylcycloprane) and with an alcohol (cyclopropylmethanol) at 1.36-Å resolution. The cyclopropane rings of both agents displace a single water molecule in a surface pocket adjacent to the phorbol-binding site, making van der Waals contacts with the backbone and/or side chains of residues Asn-237 to Ser-240. Surprisingly, two water molecules anchored in a hydrogen-bonded chain between Thr-242 and Lys-260 impart elasticity to one side of the binding pocket. The cyclopropane ring takes part in π-acceptor hydrogen bonds with the amide of Met-239. There is a crucial hydrogen bond between the oxygen atoms of the anesthetics and the hydroxyl of Tyr-236. A Tyr-236-Phe mutation results in loss of binding. Thus, both van der Waals interactions and hydrogen-bonding are essential for binding to occur. Ethanol failed to bind because it is too short to benefit from both interactions. Cyclopropylmethanol inhibited phorbol-ester-induced PKCδ activity, but failed to do so in PKCδ containing the Tyr-236-Phe mutation.  相似文献   

13.
The magnitude of protein conformational space is over-estimated by the traditional random-coil model, in which local steric restrictions arise exclusively from interactions between adjacent chain neighbors. Using a five-state model, we assessed the extent to which steric hindrance and hydrogen bond satisfaction, energetically significant factors, impose additional conformational restrictions on polypeptide chains, beyond adjacent residues. Steric hindrance is repulsive: the distance of closest approach between any two atoms cannot be less than the sum of their van der Waals radii. Hydrogen bond satisfaction is attractive: polar backbone atoms must form hydrogen bonds, either intramolecularly or to solvent water. To gauge the impact of these two factors on the magnitude of conformational space, we systematically enumerated and classified the disfavored conformations that restrict short polyalanyl backbone chains. Applying such restrictions to longer chains, we derived a scaling law to estimate conformational restriction as a function of chain length. Disfavored conformations predicted by the model were tested against experimentally determined structures in the coil library, a non-helix, non-strand subset of the PDB. These disfavored conformations are usually absent from the coil library, and exceptions can be uniformly rationalized.  相似文献   

14.
The role of the Mg2+ cation on antihypertensive molecule binding on human serum albumin (HSA) was studied by affinity chromatography. The thermodynamic data corresponding to this binding were determined for a wide range of Mg2+ concentrations (c). For the nifedipine molecule, an increase in the Mg2+ concentration produced a decrease in binding due to a decrease in the electrostatic interactions. For verapamil and diltiazem, which have the highest solvent accessible surface area, the solute binding on HSA was divided into two Mg2+ concentration regions. For a low c value below c(c) (approximately 1.6 mmol/l), the binding dependence with c was similar to that of nifedipine. For c above c(c) the hydrophobic effect created in the bulk solvent associated with a decrease in the van der Waals interactions between the solute molecule and the HSA implied a decrease in its binding. These results showed that for patients with hypertension, an Mg2+ supplementation during treatment with these antihypertensive molecules can increase the active pharmacological molecule concentration.  相似文献   

15.
The previous study, for a pair of peptide units, of the conformations which are allowed on the basis of stereochemical criteria of van der Waals contacts has been extended to the analysis of possible conformations of helical polypeptide chains. Computer methods have been developed which select conformations on the basis of both satisfactory interatomic contacts as well as the formation of good intramolecular hydrogen bonds. Such programs have been used to map the allowed dihedral angle pairs (varphi, psi) for helical polypeptide chains. This survey has been made for values of the N-C(a)-C' angle (tau) of 105 degrees , 110 degrees , and 115 degrees , from which the significant influence of this angle in determining allowed helical conformations can be demonstrated. Calculations have also been carried out using potential energy functions for the interaction between nonbonded atoms. The potential energy contour maps obtained in this manner are basically similar to the conformational maps calculated by the first method.  相似文献   

16.
17.
This paper reports a theoretical study of the free energy contributions to nucleic acid base stacking in aqueous solution. Electrostatic interactions are treated by using the finite difference Poisson-Boltzmann method and nonpolar effects are treated with explicit calculation of van der Waals interactions and/or free energy-surface area relationships. Although for some pairs of bases there is a favorable Coulombic interaction in the stacked conformation, generally the net effect of electrostatic interactions is to oppose stacking. This result is caused by the loss of favorable base-solvent electrostatic interactions, that accompany the partial removal of polar atoms from water in the stacked conformation. Nonpolar interactions, involving the hydrophobic effect and enhancement of van der Waals interactions caused by close-packing, drive stacking. The calculations qualitatively reproduce the experimental dependence of stacking free energy on purine-pyrimidine composition.  相似文献   

18.
Several hydration models for peptides and proteins based on solvent accessible surface area have been proposed previously. We have evaluated some of these models as well as four new ones in the context of near-native conformations of a protein. In addition, we propose an empirical site-site distance-dependent correction that can be used in conjunction with any of these models. The set of near-native structures consisted of 39 conformations of bovine pancreatic trypsin inhibitor (BPTI) each of which was a local minimum of an empirical energy function (ECEPP) in the absence of solvent. Root-mean-square (rms) deviations from the crystallographically determined structure were in the following ranges: 1.06-1.94 A for all heavy atoms, 0.77-1.36 A for all backbone heavy atoms, 0.68-1.33 A for all alpha-carbon atoms, and 1.41-2.72 A for all side-chain heavy atoms. We have found that there is considerable variation among the solvent models when evaluated in terms of concordance between the solvation free energy and the rms deviations from the crystallographically determined conformation. The solvation model for which the best concordance (0.939) with the rms deviations of the C alpha atoms was found was derived from NMR coupling constants of peptides in water combined with an exponential site-site distance dependence of the potential of mean force. Our results indicate that solvation free energy parameters derived from nonpeptide free energies of hydration may not be transferrable to peptides. Parameters derived from peptide and protein data may be more applicable to conformational analysis of proteins. A general approach to derive parameters for free energy of hydration from ensemble-averaged properties of peptides in solution is described.  相似文献   

19.
He Q  Rohani S  Zhu J  Gomaa H 《Chirality》2012,24(2):119-128
The chiral discrimination mechanism in the resolution of sertraline with mandelic acid was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing difference in crystal structures of the resulting diastereomeric salts. A new one-dimensional chain-like hydrogen-bonding network and unique supramolecular packing mode are disclosed. The investigation demonstrated that stable hydrogen-bonding pattern, herringbone-like arrangement of aromatic rings, and planar boundary surface in the hydrophobic region are the three most important structural characteristics expected in less soluble diastereomeric salts. The existence and magnitude of hydrogen bond, CH/π interaction, and van der Waals interaction related to three characteristic structures, determine the stability of diastereomeric salt. The hydrogen bond is not necessarily the dominant factor while the synergy and optimization of all weak intermolecular interactions attribute to the chiral recognition.  相似文献   

20.
Molecular dynamics simulations are used to model the transfer thermodynamics of krypton from the gas phase into water. Extra long, nanosecond simulations are required to reduce the statistical uncertainty of the calculated "solvation" enthalpy to an acceptable level. Thermodynamic integration is used to calculate the "solvation" free energy, which together with the enthalpy is used to calculate the "solvation" entropy. A comparison series of simulations are conducted using a single Lennard-Jones sphere model of water to identify the contribution of hydrogen bonding to the thermodynamic quantities. In contrast to the classical "iceberg" model of hydrophobic hydration, the favorable enthalpy change for the transfer process at room temperature is found to be due primarily to the strong van der Waals interaction between the solute and solvent. Although some stabilization of hydrogen bonding does occur in the solvation shell, this is overshadowed by a destabilization due to packing constraints. Similarly, whereas some of the unfavorable change in entropy is attributed to the reduced rotational motion of the solvation shell waters, the major component is due to a decrease in the number of positional arrangements associated with the translational motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号