首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Prolactin (PRL) is one of the pituitary hormones participating in the control of mammalian folliculo- and oogenesis. In the present study, the joint effect of PRL (50 ng/ml) and dibutyryl cAMP (dbcAMP, 1 mM) on oocyte maturation and the morphologic-functional state of surrounding cumulus cells was investigated in vitro. It has been shown that PRL totally suppresses the braking impact of dbcAMP on meiosis reinitiation and the completion of oocyte nuclear maturation. Furthermore, PRL partly inhibited cumulus expansion induced by dbcAMP, although it exerted the opposite effect in the control medium. In the presence of PRL, the inhibitory impact of dbcAMP on the proliferative activity of cumulus cells and on the PRL-elicited braking of destructive processes in the cells has been found. In cumulus cells, mRNA expression of PRL receptor long isoform was revealed by the RT-PCR method. The data obtained suggest an interaction of signal cascades induced by PRL and cAMP in bovine oocyte-cumulus complexes, with the coupling site of these cascades in oocytes being apparently different from that in cumulus cells.  相似文献   

2.
The hypothesis that cumulus cells inhibit oocyte maturation by a cAMP-dependent process was tested (R. M. Schultz, R. Montgomery, P. F. Ward-Bailey, and J. J. Eppig (1983). Dev. Biol.95, 294–304.). Treatment of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) resulted in a dose-dependent increase in both cumulus cell cAMP levels and in the extent of inhibition of germinal vesicle breakdown (GVBD), the first morphological manifestation of oocyte maturation. Furthermore, it was found that concentrations of a membrane-permeable analog of cAMP, dibutyryl cAMP (dbcAMP), that were below those required for complete meiotic inhibition had a greater inhibitory effect on cumulus cell-enclosed oocytes than on denuded oocytes. Cumulus cell-enclosed and denuded oocytes matured at the same time in the absence of dbcAMP. Ablation of the gap junctions that couple cumulus cells to the oocyte abolished the maturation-inhibitory action of cumulus cells that was promoted either by FSH or low concentrations of dbcAMP. These results are consistent with the hypothesis that inhibition of oocyte maturation is mediated by a factor of granulosa/cumulus cell origin, other than cAMP, which requires cAMP for its activity and/or generation, and an intact intercellular coupling pathway between cumulus cells and the oocyte. A variety of steroid hormones potentiated the FSH-induced inhibition of maturation in cumulus cell-enclosed oocytes. In addition, steroid hormones inhibited maturation in denuded oocytes, but only when oocyte cAMP levels were elevated by cAMP analogs or forskolin. Steroids alone did not inhibit maturation of either cumulus cell-enclosed or denuded oocytes. Moreover, the steroids alone or in combination with FSH did not affect metabolic coupling between the cumulus cells and oocytes, nor did testosterone affect the forskolin-induced level of cAMP in denuded oocytes. Therefore, it is proposed that the oocyte is a site for the synergistic activity of steroid hormones with a cAMP-dependent process in inhibiting maturation. Results of these studies are discussed in terms of the roles of intercellular communication, cAMP, a putative maturation-inhibiting factor, and steroid hormones in the inhibition of maturation of mouse oocytes.  相似文献   

3.
The efficacy of follicle-stimulating hormone (FSH), epidermal growth factor (EGF), and dibutyryl cGMP (dbcGMP) as inducers of germinal vesicle breakdown (GVBD) in cumulus cell-enclosed mouse oocytes was examined when meiotic arrest was maintained in vitro with purines, dibutyryl cAMP (dbcAMP), or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). When FSH was added to hypoxanthine (HX)-containing medium, the effect on oocyte maturation was at first inhibitory and later stimulatory. EGF stimulated GVBD at all time points tested. FSH and EGF also induced GVBD when oocytes were arrested with dbcAMP, IBMX, or guanosine. Dibutyryl cGMP stimulated GVBD when meiotic arrest was maintained with HX, but not when oocytes were meiotically arrested with guanosine, and was inhibitory in dbcAMP-supplemented medium. FSH and dbcGMP produced a transient delay of oocyte maturation in control medium, but the FSH effect was much more pronounced. EGF had no effect on maturation kinetics. The actions of FSH and EGF required the presence of cumulus cells. Both agents significantly stimulated cAMP production in oocyte-cumulus cell complexes. A brief exposure of complexes to a high concentration of dbcAMP induced GVBD, suggesting that FSH and EGF may act via a cAMP-dependent process. The frequency of FSH- and EGF-induced GVBD in cumulus cell-enclosed oocytes was significantly higher than the frequency of GVBD when oocytes were cultured while denuded of cumulus cells. of maturation is apparently not mediated solely by oocyte-cumulus cell uncoupling and termination of the transfer of an inhibitory meiotic signal from cumulus cells to the oocyte. The data suggest the generation of a positive signal within cumulus cells in response to hormone treatment that acts upon the oocyte to stimulate GVBD in the continued presence of inhibitory factors.  相似文献   

4.
The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21–22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (< 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin.  相似文献   

5.
This experiment attempted to determine the effect of cAMP on maturation of bovine oocytes in chemically-defined, serum-free medium. Cumulus-oocyte complexes were incubated in modified DME/Ham F-12 medium containing dbcAMP at 0 (control), 10(-6), 10(-4) and 10(-2) M. After 18 and 24 hours of culture, the percentage of oocyte maturation between 0 (control) and 10(-2) M dbcAMP-treated groups were significant. Some oocytes were cultured with dbcAMP (10(-2) M) for 6, 12 and 24 hours followed by incubation in control medium to test the reversibility of inhibition or of any harmful effect of dbcAMP. The inhibitory effect of 10(-2) M dbcAMP on bovine oocyte maturation was reversed by transferring cumulus-oocyte complexes to the control medium. In addition, forskolin (0.12 and 0.24 mM) was effective (P < 0.01) in preventing the resumption of meiosis. The cAMP content of oocytes cultured with forskolin was not increased, although cumulus cells responded to forskolin with an increase in cAMP content. These results indicate that elevated levels of cAMP in the culture medium are important in regulating resumption of meiosis of bovine oocytes in vitro.  相似文献   

6.
Cumulus cells are metabolically coupled to the mammalian oocyte via heterologous gap junctions. One function attributed to the gap junctional communications is the transfer of regulatory signals that direct the meiotic state of the oocyte. However, the precise role of these junctions in meiotic maturation is still unclear. The aim of this study was to test the hypothesis that meiotic resumption is induced by the transfer of a stimulatory signal(s) from the cumulus cells to the oocyte through the gap junctional coupling pathway. We have previously shown that the mitogenic lectin concanavalin A (Con A) induces oocyte maturation in isolated cumulus cell-enclosed oocytes (CEO) when meiotic arrest is maintained with a number of different inhibitory agents [Biol Reprod 1990; 42:413-423]. In the present study, Con A stimulated maturation in dibutyryl cAMP (dbcAMP)-arrested CEO but not in denuded oocytes cocultured with cumulus cells. Heptanol, a known gap junction uncoupler, effectively prevented Con A- and FSH-induced maturation of intact CEO and dramatically reduced metabolic coupling between cumulus cells and the oocyte. However, this alcohol had no effect on denuded oocytes (DO) or on dbcAMP-arrested CEO in the absence of stimulating ligand. Con A and FSH produced only a minimal loss of coupling. When the effects of heptanol were compared with those of the n-alkanols hexanol and decanol, the efficacies of these agents as suppressors of Con A-stimulated oocyte maturation was directly related to their relative abilities to suppress metabolic coupling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have developed an assay that can detect relative changes in the amount of a non-cAMP inhibitor of maturation present in cumulus cells (Eppig et al., 1983, Dev. Biol., 100:39-49). Using this assay in which accelerated maturation of a group of treated cumulus cell-oocyte complexes relative to untreated complexes indicates a decrease in the amount of inhibitor, results of the experiments described here suggest a possible relationship between elevation of cAMP levels and subsequent decreased amounts of a non-cAMP inhibitor. Mouse oocytes obtained from cumulus cell-oocyte complexes treated with luteinizing hormone (LH) resumed meiosis prior to oocytes obtained from untreated complexes; the degree of acceleration of maturation was dependent on LH concentration. A similar result was obtained with follicle-stimulating hormone (FSH). Correlated with LH- or FSH-acceleration of maturation was an LH- or FSH-induced elevation of cumulus cell cAMP levels. Inhibiting LH-induced elevation of cumulus cell cAMP levels inhibited LH-induced acceleration of maturation. An initial incubation of complexes in medium containing dibutyryl cAMP (dbcAMP) also promoted acceleration of maturation. In contrast, maturation of denuded oocytes was not altered by treatment with either LH, FSH, or dbcAMP. Complexes initially incubated in dbcAMP-containing medium still demonstrated acceleration of maturation after a subsequent 2 h incubation in dbcAMP-free medium. Relative to untreated complexes, none of these treatments disrupted intercellular communication between cumulus cells and the oocyte. Elevating follicle cAMP levels with cholera toxin induced maturation of follicle-enclosed oocytes when cumulus cell-oocyte coupling was still fully maintained. These results are interpreted to indicate that gonadotropin-mediated acceleration of maturation is via a cAMP-dependent reduction in the level of a maturation inhibitor present in granulosa/cumulus cells.  相似文献   

8.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

9.
We have recently reported that the adenylate cyclase activator, forskolin, induces in the rat ovarian follicle both cAMP accumulation and oocyte maturation. We demonstrate here, on the other hand, that the spontaneous maturation in vitro of isolated rat cumulus-enclosed oocytes is inhibited by forskolin. The inhibitory effect of forskolin is dose dependent with an ED50 at 15 microM. Forskolin inhibition decreases gradually with time, being completely relieved by 20 h of culture. Methylisobutylxanthine significantly prolongs the duration of the inhibitory action of forskolin. In addition to its inhibitory effect on oocyte maturation, forskolin triggers the cumulus-oocyte complex to generate cAMP. Cyclic AMP accumulation is maximally stimulated by 100 microM of forskolin with an ED50 at 60 microM. The potency of the cumulus-oocyte complex to respond to forskolin in terms of cAMP accumulation decreases with time. The pattern of the decrease in the potency of the cumulus-oocyte complexes to generate cAMP corresponds with the relief of its inhibitory influence on the oocyte. These results indicate that inhibition of maturation of the cumulus-enclosed oocyte may be coupled to elevation of cAMP levels in the cumulus-oocyte complex. As isolated cumulus-free oocytes are not inhibited by forskolin, we suggest that in the cumulus-enclosed oocyte system, cAMP generated by the cumulus cells is apparently transferred to the oocyte and maintains it in a meiotically arrested state. Maturation in this system occurs upon relief of inhibition which results from cessation of cAMP generation by the cumulus cells.  相似文献   

10.
This study was carried out to examine the effects of the meiosis-activating C(29) sterol, 4,4-dimethyl-5 alpha-cholesta-8,14, 24-trien-3 beta-ol (FF-MAS), on mouse oocyte maturation in vitro. Cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) from hormonally primed, immature mice were cultured 17-18 h in minimum essential medium (MEM) containing 4 mM hypoxanthine plus increasing concentrations of FF-MAS. The sterol induced maturation in DO with an optimal concentration of 3 microg/ml but was without effect in CEO, even at concentrations as high as 10 microg/ml. Some stimulation of maturation in hypoxanthine-arrested CEO was observed when MEM was replaced by MEMalpha. Interestingly, the sterol suppressed the maturation of hypoxanthine-arrested CEO in MEM upon removal of glucose from the medium. FF-MAS also failed to induce maturation in DO when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP). The rate of maturation in FF-MAS-stimulated, hypoxanthine-arrested DO was slow, as more than 6 h of culture elapsed before significant meiotic induction was observed, and this response required the continued presence of the sterol. Although the oocyte took up radiolabeled lanosterol, such accumulation was restricted by the presence of cumulus cells. In addition, lanosterol failed to augment FSH-induced maturation and was even inhibitory at a high concentration. Moreover, the downstream metabolite, cholesterol, augmented the inhibitory action of dbcAMP on maturation in both CEO and DO. Two inhibitors of 14 alpha-demethylase, ketoconazole, and 14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta, 15 alpha-diol that can suppress FF-MAS production from lanosterol failed to block consistently FSH-induced maturation. These results confirm the stimulatory action of FF-MAS on hypoxanthine-arrested DO but do not support a universal meiosis-inducing function for this sterol.  相似文献   

11.
The factor(s) produced by porcine cumulus cells (cumulus cell factor (s): CCF) was described as quantitatively inhibiting the maturation of oocytes in vitro (Petr et al, 1989). When 1, 10, 20 or 40 cumulus oocyte complexes (COCs) were cultured in a droplet of medium (vol 10 microliters), germinal vesicle breakdown (GVBD) was observed in 85, 78, 57 or 19% of the oocytes, respectively. GVBD was observed in 82, 84, 80 or 90% of cumulus-free oocytes, respectively, when they were cultured at the same numbers per 10-microliters droplet. When 1, 10, 20 or 40 cumulus-free oocytes were cultured under the same conditions in a medium containing 140 dbcAMP per ml, 61, 63, 60 or 58% of them were observed at GVBD. However, when COCs were cultured in a 10 microliter droplet of medium with 140 micrograms of dbcAMP per ml, GVBD occurred in 64, 42, 9 or 0% respectively. Based on these results, we can conclude that dbcAMP exerted a further inhibitory effect on GVBD in pig oocytes cultured under the influence of inhibitory factor(s) from cumulus cells. On the other hand, dbcAMP was shown to partly overcome the effect of CCF on GVBD in porcine oocytes. This suggestion was based on the finding that a 6-h pre-culture of COCs in a medium with 1,000 micrograms of dbcAMP significantly decreased the subsequent effect of CCF (GVBD: 44%) compared with those pre-cultured in a medium with 140 micrograms of dbcAMP/ml (GVBD:5%) or without dbcAMP (GVBD: 15%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The comparative investigation of the individual and joint impact of prolactin (PRL, 50 ng/ml) and theophylline (TP), a nonselective inhibitor of phosphodiesterases, on nuclear maturation of bovine oocytes and the expansion of cumulus cells enclosing the oocytes was carried out using a model of in vitro culturing. It has been shown that TP (5 mM) exerts a short-term inhibitory action on oocyte meiosis reinitiation and blocks it at diakinesis and metaphase I stages as well as inhibits the cumulus expansion. The addition of PRL to the medium containing TP caused the decrease in the rate of oocytes at diplotene stage after 6 h of culturing and the increase in the rate of oocytes attained the closing stages of maturation after 24 h of culturing. Furthermore, PRL suppressed partly the inhibitory impact of TP on the expansion of cumulus cells. The data obtained suggest the signal cascade induced by PRL in bovine oocyte-cumulus complexes to be compled with cAMP-dependent intracellular pathway.  相似文献   

13.
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.  相似文献   

14.
Many studies have shown that cyclic adenosine-5′-monophosphate (cAMP)-dependent protein kinase A (PKA) and G-protein-coupled receptor 3 (GPR3) are crucial for controlling meiotic arrest in oocytes. However, it is unclear how gonadotropins modulate these factors to regulate oocyte maturation, especially by gap junctional communication (GJC). Using an in vitro meiosis-arrested mouse cumulus-oocyte complex (COC) culture model, we showed that there is a close relationship between follicle-stimulating hormone (FSH) and the PKA type I (PKAI) and GPR3. The effect of FSH on oocyte maturation was biphasic, initially inhibitory and then stimulatory. During FSH-induced maturation, rapid cAMP surges were observed in both cumulus cells and oocyte. Most GJC between cumulus cells and oocyte ceased immediately after FSH stimulation and recommenced after the cAMP surge. FSH-induced maturation was blocked by PKAI activator 8-AHA-cAMP. Levels of PKAI regulatory subunits and GPR3 decreased and increased, respectively, after FSH stimulation. In the presence of the GJC inhibitor carbenoxolone (CBX), FSH failed to induce the meiotic resumption and the changes in PKAI, GPR3 and cAMP surge in oocyte were no longer detected. Furthermore, GPR3 was upregulated by high cAMP levels, but not by PKAI activation. When applied after FSH stimulation, the specific phosphodiesterase 3A (PDE3A) inhibitor cilostamide immediately blocked meiotic induction, regardless of when it was administered. PKAI activation inhibited mitogen-activated protein kinase (MAPK) phosphorylation in the oocytes of COCs, which participated in the initiation of FSH-induced meiotic maturation in vitro. Just before FSH-induced meiotic maturation, cAMP, PKAI, and GPR3 returned to basal levels, and PDE3A activity and MAPK phosphorylation increased markedly. These experiments show that FSH induces a transient increase in cAMP levels and regulates GJC to control PKAI and GPR3 activities, thereby creating an inhibitory phase. After PDE3A and MAPK activities increase, meiosis resumes.  相似文献   

15.
The selection of culture media and supplements therein has a tremendous impact on the regulation of oocyte maturation in vitro. In the present study, we have evaluated how altering the levels of glutamine in the presence or absence of glucose affects meiotic arrest in cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) when cultured in either the simple medium M16 or the more complex Eagle's minimum essential medium (MEM). We have also tested the effectiveness of follicle-stimulating hormone (FSH) in triggering germinal vesicle breakdown (GVB) and purine de novo synthesis in differing MEM culture conditions. When DO were cultured 17-18 hr in hypoxanthine (HX)- or dbcAMP-supplemented M16 medium, neither glucose nor glutamine had any effect on oocyte maturation, with dbcAMP the more effective inhibitor. In the absence of glutamine, cumulus cells promoted meiotic resumption, since significantly lower levels of meiotic arrest were maintained in CEO than in DO by either HX or dbcAMP, but addition of the amino acid dose-dependently decreased the maturation percentage in CEO below that observed in DO. In MEM, glutamine and glucose again had little effect on the maturation of DO, although the percentage of maturing DO in HX-supplemented medium was about 20% lower than that in M16 medium. In the absence of glucose, high levels of maturation were observed in CEO in glutamine-free medium that were dose-dependently lowered by the amino acid. However, when glucose was present, CEO were as effectively arrested as DO when glutamine was absent, with no further effect of the amino acid. This inhibitory action of glucose was dependent on the essential amino acids present in MEM. The effects of glutamine were not due to changes in metabolic coupling between the oocyte and cumulus cells. Measurement of purine de novo synthesis indicated that the maintenance of meiotic arrest as well as FSH induction of meiotic resumption were associated with increases in purine synthesis. We conclude that glucose and glutamine act cooperatively to promote the synthesis of new purine compounds within the somatic compartment and that the timing and duration of such synthesis determines whether meiotic resumption will be suppressed or promoted.  相似文献   

16.
Experiments were carried out to determine the effect of different macromolecules on the follicle-stimulating hormone (FSH)-induced maturation of mouse oocytes in culture. Cumulus cell-enclosed oocytes (CEO) were isolated from gonadotropin-primed mice and maintained in meiotic arrest for 17-18 h with the cAMP analogue, dibutyryl cAMP (dbcAMP). Germinal vesicle breakdown (GVB) was stimulated by the addition of FSH. Medium was supplemented with either no macromolecule or with varying concentrations of polyvinylpyrrolidone (PVP), polyvinylalcohol (PVA), crystallized bovine serum albumin (BSA), or fetal bovine serum (FBS). Oocyte maturation in all FSH-free cultures occurred at a frequency of about 30% or below. High frequencies of maturation were achieved when FSH was added to macromolecule-free medium or to cultures containing PVP, PVA, or BSA. Crystallized BSA was the most effective of these in supporting stimulation of maturation (94% GVB at 3 mg/ml, compared with 72-74% with synthetic polymer-supplemented or macromolecule-free media). The BSA effect was not due to contaminating fatty acids, and a less pure fraction V BSA was not as effective in supporting FSH-induced maturation. FBS suppressed FSH stimulation of maturation in a dose-dependent fashion. Sera from pigs, goats, horses, and rats were also inhibitory, but bovine calf serum (BCS) permitted a high maturation frequency (80% GVB). When added to medium containing either FBS or BCS, crystallized BSA had no effect on FSH-stimulated maturation, but fraction V BSA suppressed maturation in both serum-supplemented media. Under no conditions did FSH stimulate maturation in cumulus cell-free oocytes. These results demonstrate that hormone-induced oocyte maturation is supported in vitro by nonprotein polymers as well as BSA and that the behavior of the oocyte-cumulus cell complex depends on the purity of the BSA sample. In addition, serum contains inhibitory factors that suppress the positive response to FSH. Thus, the choice of macromolecular supplement is of critical importance when testing the hormone responsiveness of isolated cumulus cell-enclosed oocytes in culture.  相似文献   

17.
It is known that dibutyryl cyclic AMP (dbcAMP) and theophylline inhibit the spontaneous maturation of isolated mouse oocytes. The present study demonstrates that dbcAMP (0.01-1.0 mM) as well as cyclic AMP (cAMP, 10 mM) and a phosphodiesterase inhibitor (IBMX, 0.01-1.0 mM) prevent spontaneous maturation of isolated rat oocytes. As reported earlier an increase in oxygen consumption by the oocyte was found following maturation. When the oocytes were cultured in the presence of dbcAMP or cAMP no change in respiration occurred during culture. These results argue against the theory that cAMP acts as a direct mediator of the action of luteinizing hormone (LH) on oocyte maturation. Furthermore they suggest that changes in oocyte energy metabolism are closely related to the maturation process.  相似文献   

18.
Mouse oocytes are reversibly inhibited from resuming meiotic maturation in vitro by cAMP phosphodiesterase inhibitors such as 3-isobutyl-1-methyl xanthine (IBMX) and cAMP analogs such as dibutyryl cAMP (dbcAMP). Oocytes cultured in IBMX-containing medium were transferred to and cultured in IBMX-free medium for various periods of time prior to their return to either IBMX- or dbcAMP-containing medium. Results from these experiments defined a period of time in which oocytes became committed to resuming meiosis. Forskolin, which elevated the intracellular oocyte cAMP concentration, transiently inhibited oocytes from resuming meiosis. Levels of cAMP were determined in oocytes incubated in medium that allows resumption of meiosis. The level of oocyte cAMP decreased significantly during the time in which oocytes become committed to resuming meiosis. This decrease in oocyte cAMP was not observed in oocytes inhibited from resuming meiosis by IBMX. In addition, cAMP levels were determined in preovulatory antral follicles, cumulus cell-oocyte complexes, and oocytes during gonadotropin-induced resumption of meiosis in vivo. A decrease in oocyte cAMP preceded resumption of meiosis as manifested by germinal vesicle breakdown (GVBD). This decrease apparently occurred before or during a period of time in which follicle and cumulus cell cAMP were increasing. Associated with commitment to resume meiosis was a characteristic set of changes in oocyte phosphoprotein metabolism that preceded GVBD. These changes are, to date, some of the first reported biochemical changes that precede GVBD. Results from these experiments are discussed in terms of a possible role cAMP may play in regulation of resumption of meiosis in mammals.  相似文献   

19.
The role of the cumulus cells in initiating the resumption of meiosis after exposure to forskolin and dbcAMP was studied in the mouse. The resumption of meiosis was monitored by the percentage of germinal vesicle breakdown (GVBD) and polar body formation (PB). The cumulus-enclosed oocytes (CEO) and denuded oocytes (DO) were cultured with and without hypoxanthine (HX) in the culture medium. Three types of experiments were performed: (1) Effect of forskolin on spontaneous resumption of meiosis, i.e. cultures without HX, and two experiments in which HX is present throughout the culture: (2) Effect of transient exposure to forskolin or dibutyric-cyclic adenosinemonophosphate (dbcAMP) on GVBD prior to continued culture without forskolin or dbcAMP (oocyte priming). (3) Priming of CEO with forskolin for 2 hr, separation of cumulus cells and oocytes, followed by coculture of rejoined cumulus cells and oocytes, or coculture of the cumulus cells and new, unprimed DO. (1) Forskolin inhibited a spontaneous resumption of meiosis in a dose-dependent manner during the first 5 hr of culturing. After 22 hr all controls and CEO resumed meiosis, whereas only half of the DO did. (2) At least 1 hr of priming the CEO with forskolin is needed to induce GVBD and PB formation, but forskolin inhibited the resumption of meiosis when present for 24 hr. Similar results were obtained with a high concentration of dbcAMP. (3) A separation and rejoining of oocytes and cumulus cells after priming induced the resumption of meiosis in a significantly greater number of oocytes than in the control oocytes which were not primed. The GVBD of unstimulated DO also increased significantly when cocultured with cumulus cells from primed CEO. The percentage of GVBD in unprimed DO and in DO isolated from primed CEO was the same. We suggest that within 1–2 hr, forskolin and cAMP stimulate cumulus cells to produce a diffusible meiosis-inducing substance which overcomes HX-inhibition and induces oocyte maturation, including both GVBD and PB formation. The CEO must be primed for more than 2 hr before the resumption of meiosis in DO isolated from such CEO is induced. Oocyte-cumulus connections are crucial as far as initiating the production of a meiosis-inducing substance is concerned. Oocyte-cumulus connections are not needed for transferring this substance to the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Cyclic AMP is one of the key regulators of mammalian meiosis. In the present work, realization pathways of the previously revealed modulating effect of prolactin (PRL) on the cAMP-dependent mechanism of meiosis regulation in bovine oocytes were studied. A comparative investigation of individual and combined effects of PRL (50 ng/ml) and an activator of adenylate cyclase forskolin (FK, 20 μM) on the meiotic reinitiation and completion of nuclear maturation in cumulus-surrounded and cumulus-free oocytes was performed. It has been shown that the pattern of the effects of PRL on the meiotic resumption in oocytes devoid of cumulus cells depends on the presence of FK in the culture medium. Furthermore, the realization of this effect is not associated with the activation of cytoplasmic isoforms of protein kinase C. It has also been found that PRL inhibits the retarding action of FK on the completion of oocyte nuclear maturation both in the presence and absence of cumulus cells. These findings suggest that PRL may modulate the functioning of the cAMP-dependent mechanism of meiosis regulation by the direct action on bovine oocytes, with realization of this action being independent of the metabolic coupling of oocytes with cumulus cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号