首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cnidaria are the most basal phylum containing a well-developed visual system located on specialized sensory structures (rhopalia) with eyes and statocyts. We have been exploring the cubozoan jellyfish, Tripedalia cystophora. In addition to containing simple photoreceptive ocelli, each rhopalium in Tridedalia has a large and small complex, camera-type eye with a cellular lens containing three distinct families of crystallins which apparently serve non-lenticular functions. Thus, Tridpedalia recruited crystallins by a gene sharing strategy as have mollusks and vertebrates. Tripedalia has a single Pax gene, PaxB, which encodes a structural and functional Pax 2/5/8-like paired domain as well as an octapeptide and Pax6-like homeodomain. PaxB binds to and activates Tripedalia crystallin promoters (especially J3-crystallin) and the Drosophila rhodopsin rh6 gene in transfection tests and induces ectopic eyes in Drosophila. In situ hybridization showed that PaxB and crystallin genes are expressed in the lens, retina and statocysts. We suggest from these results that an ancestral PaxB gene was a primordial gene in eye evolution and that eyes and ears (mechanoreceptors) may have had a common evolutionary origin. Thus, the numerous structural and molecular features of Tridpalia rhopalia indicate that ancient cubozoan jellyfish are fascinating models for evo/devo insights into eyes and other sensory systems.  相似文献   

2.
3.
4.
Cnidarians are the simplest animals in which distinct eyes are present. We have previously suggested that cnidarian Pax-Cam might represent a precursor of the Pax-6 class. Here we show that when expressed in Drosophila imaginal discs, Pax-Cam chimeric proteins containing the C-terminal region of EY were capable of eye induction and driving expression of a reporter gene under the control of a known EY target (the sine oculis gene). Whilst these results are consistent with a Pax-6-like function for Pax-Cam, in band shift experiments we were unable to distinguish the DNA-binding behaviour of the Pax-Cam Paired domain from that of a second Acropora Pax protein, Pax-Bam. The ability of a Pax-Bam/EY chimera to also induce eye formation in leg imaginal discs, together with the in vitro data, cast doubt on previously assumed direct relationships between cnidarian Pax genes and the Pax-6 and Pax-2/5/8 classes of bilateral animals.  相似文献   

5.
Pax genes play key regulatory roles in embryonic and sensory organ development in metazoans but their evolution and ancestral functions remain widely unresolved. We have isolated a Pax gene from Placozoa, beside Porifera the only metazoan phylum that completely lacks nerve and sensory cells or organs. These simplest known metazoans also lack any kind of symmetry, organs, extracellular matrix, basal lamina, muscle cells, and main body axis. The isolated Pax gene from Trichoplax adhaerens harbors a paired domain, an octapeptide, and a full-length homeodomain. It displays structural features not only of PaxB and Pax2/5/8-like genes but also of PaxC and Pax6 genes. Conserved splice sites between Placozoa, Cnidaria, and triploblasts, mark the ancient origin of intron structures. Phylogenetic analyses demonstrate that the Trichoplax PaxB gene, TriPaxB, is basal not only to all other known PaxB genes but also to PaxA and PaxC genes and their relatives in triploblasts (namely Pax2/5/8, Pax4/6, and Poxneuro). TriPaxB is expressed in distinct cell patches near the outer edge of the animal body, where undifferentiated and possibly multipotent cells are found. This expression pattern indicates a developmental role in cell-type specification and/or differentiation, probably in specifying-determining fiber cells, which are regarded as proto-neural/muscle cells in Trichoplax. While PaxB, Pax2/5/8, and Pax6 genes have been linked to nerve cell and sensory system/organ development in virtually all animals investigated so far, our study suggests that Pax genes predate the origin of nerve and sensory cells.  相似文献   

6.
7.
8.
9.
The Optimedin gene, also known as Olfactomedin 3, encodes an olfactomedin domain-containing protein. There are two major splice variants of the Optimedin mRNA, Optimedin A and Optimedin B, transcribed from different promoters. The expression pattern of the Optimedin A variant in the eye and brain overlaps with that for Pax6, which encodes a protein containing the paired and homeobox DNA-binding domains. The Pax6 gene plays a critical role for the development of eyes, central nervous system, and endocrine glands. The proximal promoter of the Optimedin A variant contains a putative Pax6 binding site in position -86/-70. Pax6 binds this site through the paired domain in vitro as judged by electrophoretic mobility shift assay. Mutations in this site eliminate Pax6 binding as well as stimulation of the Optimedin promoter activity by Pax6 in transfection experiments. Pax6 occupies the binding site in the proximal promoter in vivo as demonstrated by the chromatin immunoprecipitation assay. Altogether these results identify the Optimedin gene as a downstream target regulated by Pax6. Although the function of optimedin is still not clear, it is suggested to be involved in cell-cell adhesion and cell attachment to the extracellular matrix. Pax6 regulation of Optimedin in the eye and brain may directly affect multiple developmental processes, including cell migration and axon growth.  相似文献   

10.
11.
12.
The mammalian Pax gene family comprises nine members that are characterized by a conserved DNA-binding motif, the paired domain, which was originally described in the Drosophila protein paired. Both loss- and gain-of-function studies reveal that Pax genes carry out essential roles during embryogenesis, and in some instances, may function as master regulatory genes. This review focuses on both genetic and biochemical aspects of the Pax family, and emphasizes important differences in the activity of individual Pax genes and their protein products.  相似文献   

13.
14.
15.
Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities.  相似文献   

16.
The murine genome contains multiple genes with protein domains homologous to the Drosophila paired box, present in certain segmentation genes. At least one of these murine paired box (Pax) genes is associated with a developmental mutation. This report, in conjunction with the accompanying paper, describes a second member of this gene family, Pax2, that is also expressed during embryogenesis. Two overlapping cDNA clones were isolated and sequenced. At least two forms of the Pax2 protein can be deduced from the cDNA sequence. In addition to the highly conserved paired domain, an octapeptide sequence is located downstream. Expression of Pax2 is primarily restricted to the developing embryo in the excretory and central nervous systems. The transient nature of Pax2 expression during kidney organogenesis correlates with polarization and induction of epithelial structures and may indicate an important morphogenetic role for this gene.  相似文献   

17.
Pax: a murine multigene family of paired box-containing genes.   总被引:31,自引:0,他引:31  
A murine multigene family has been identified that shares a conserved sequence motif, the paired box, with developmental control and tissue-specific genes of Drosophila. To date five murine paired box-containing genes (Pax genes) have been described and one, Pax-1, has been associated with the developmental mutant phenotype undulated. Here we describe the paired boxes of three novel Pax genes, Pax-4, Pax-5, and Pax-6. Comparison of the eight murine paired domains of the mouse, the five Drosophila paired domains, and the three human paired domains shows that they fall into six distinct classes: class I comprises Pox meso, Pax-1, and HuP48; class II paired, gooseberry-proximal, gooseberry-distal, Pax-3, Pax-7, HuP1, and HuP2; class III Pax-2, Pax-5, and Pax-8; class IV Pax-4; class V Pox neuro; and class VI Pax-6. Pax-1 and the human gene HuP48 have identical paired domains, as do Pax-3 and HuP2 as well as Pax-7 and HuP1, and are likely to represent homologous genes in mouse and man. Identical intron-exon structure and extensive sequence homology of their paired boxes suggest that several Pax genes represent paralogs. The chromosomal location of all novel Pax genes and of Pax-3 and Pax-7 has been determined and reveals that they are not clustered.  相似文献   

18.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

19.
Pax6 induces ectopic eyes in a vertebrate.   总被引:13,自引:0,他引:13  
  相似文献   

20.
Several mouse genes designated 'Pax genes' contain a highly conserved DNA sequence homologous to the paired box of Drosophila. Here we describe the isolation of Pax8, a novel paired box containing clone from an 8.5 day p.c. mouse embryo cDNA library. An open reading frame of 457 amino acids (aa) contains the 128 aa paired domain near the amino terminus. Another conserved region present in some other paired box genes, the octapeptide Tyr-Ser-Ile-Asn-Gly-Leu-Leu-Gly, is located 43 aa C-terminal to the paired domain. Using an interspecies backcross system, we have mapped the Pax8 gene within the proximal portion of mouse chromosome 2 in a close linkage to the surf locus. Several developmental mutations are located in this region. In situ hybridization was used to determine the pattern of Pax8 expression during mouse embryogenesis. Pax8 is expressed transiently between 11.5 and 12.5 days of gestation along the rostrocaudal axis extending from the myelencephalon throughout the length of the neural tube, predominantly in two parallel regions on either side of the basal plate. We also detected Pax8 expression in the developing thyroid gland beginning at 10.5 days of gestation, during the thyroid evagination. In the mesonephros and metanephros the expression of Pax8 was localized to the mesenchymal condensations, which are induced by the nephric duct and ureter, respectively. These condensations develop to functional units, the nephrons, of the kidney. These data are consistent with a role for Pax8 in the induction of kidney epithelium. The embryonic expression pattern of Pax8 is compared with that of Pax2, another recently described paired box gene expressed in the developing excretory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号