首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide. After addition of tyrosine or phenol to aqueous solutions containing oxoferryl forms of the hemoproteins, thiamine, and nitrite, the yield of thiochrome greatly increased, whereas the yield of ODTch decreased. In the presence of high concentrations of tyrosine or phenol compounds ODTch was not formed at all. The neutral form of thiamine with the closed thiazole cycle and minor tricyclic form of thiamine do not enter the heme pocket of the protein and do not interact with the oxoferryl heme complex Fe(IV=O) or porphyrin radical. The tricyclic form of thiamine is oxidized to thiochrome by tyrosyl radicals located on the surface of the hemoprotein. The thiol form of thiamine is oxidized to thiamine disulfide by both hemoprotein tyrosyl radicals and oxoferryl heme complexes. Nitrite and also tyrosine, tyramine, and phenol readily penetrate into the heme pocket of the protein and reduce the oxyferryl complex to ferric cation. These reactions yield nitrogen dioxide as well as tyrosyl and phenoxyl radicals of tyrosine molecules and phenol compounds, respectively. Tyrosyl and phenoxyl radicals of low molecular weight compounds oxidize thiamine only to thiochrome and thiamine disulfide. The effect of oxoferryl forms of myoglobin and hemoglobin, nitrogen dioxide, and phenol on thiamine oxidative transformation as well as antioxidant properties of the hydrophobic thiamine metabolites thiochrome and ODTch are discussed.  相似文献   

2.
After peroxynitrite addition to aqueous solutions of thiamine at neutral and alkaline pH formation of thiamine disulfide and fluorescent products was observed. The fluorescent compounds were identified as thiochrome (TChr) and oxodihydrothiochrome (ODTChr) using spectral and fluorescent methods as well as paper chromatography and mass spectrometry. TChr and ODTChr are not the end products of thiamine oxidation and in neutral medium are unstable to peroxynitrite action and degrade rapidly to form non-fluorescent products. Thiamine, TChr, and ODTChr protects tyrosine from its modification by peroxynitrite. In the presence of TChr and ODTChr modification of tyrosinyl residues in human serum albumin and cytocrome c decreased. The prolonged thiamine incubation with glucose, amino acids and nitrite was accompanied by oxidative transformation of thiamine and formation of fluorescent products. We have shown that thiamine is also oxidized into TChr and ODTChr, i.e., it forms the same products as after thiamine oxidation by peroxynitrite. Moreover, thiamine (or its derivatives) appears as peroxynitrite scavenger leading to toxic effects lowering at diabetes mellitus.  相似文献   

3.
Separation and determination of thiamine phosphate esters were achieved by reversed-phase high-performance liquid chromatography (hplc) after conversion to corresponding thiochrome esters. The elution order was thiochrome triphosphate, thiochrome pyrophosphate, and thiochrome monophosphate by a system composed of 25 mm potassium phosphate buffer (pH 8.4) and 2.5% N,N-dimethylformamide. The minimum amount reproducibly detected was 0.05 pmol for each thiochrome phosphate. Thiamine phosphate esters in rat tissues were successfully determined by the reversed-phase hplc after alkaline oxidation of the tissue extract, which resulted in a good agreement in their contents to those obtained by the straight-phase hplc previously reported.  相似文献   

4.
Penetration of thiamine and its metabolites through the liver mitochondria and blood cells of white rats has been studied. It is shown that the catabolic forms of thiamine, thiochrome and 4-methyl-5 oxyethylthiasole penetrate through the mitochondria membranes at a larger extent than thiamine and its phosphoric esters. An increase in concentration of thiamine and its metabolites in the incubation medium from 0.1 mM to 3.2 mM leads to intensification of this process. The larger permeability of thiochrome and 4-methyl-5 oxyethylthiasole through biological membranes permits explaining the principles of catabolic thiamine forms removal from the tissues and organism.  相似文献   

5.
High-performance liquid chromatography was used to separate thiamine and its phosphate esters after conversion to corresponding highly fluorescent thiochrome derivatives by alkaline oxidation. These compounds were absorbed on LiChrosorb-NH2, eluted with acetonitrile-90 mm potassium phosphate buffer (pH 8.4), and determined spectrofluorometrically. A complete, rapid, and quantitative separation of thiochrome and its phosphate derivatives was made and the minimum amount detected was 1 pmol for each of these compounds.  相似文献   

6.
Dityrosine formation leads to the cross-linking of proteins intra- or intermolecularly. The formation of dityrosine in lens proteins oxidized by metal-catalyzed oxidation (MCO) systems was estimated by chemical and immunochemical methods. Among the four MCO systems examined (H(2)O(2)/Cu, H(2)O(2)/Fe-ethylenediaminetetraacetic acid (Fe-EDTA), ascorbate/Cu, ascorbate/Fe-EDTA), the treatment with H(2)O(2)/Cu preferentially caused dityrosine formation in the lens proteins. The success of oxidative protein modification with all the MCO systems was confirmed by carbonyl formation estimated using 2,4-dinitrophenylhydrazine. The loss of tyrosine by the MCO systems was partly due to the formation of protein-bound 3,4-dihydroxyphenylalanine. The formation of dityrosine specific to H(2)O(2)/Cu was confirmed by using poly-(Glu, Ala, Tyr) and N-acetyl-tyrosine as a substrate. The dissolved oxygen concentration in the H(2)O(2)/Cu system hardly affected the amount of dityrosine formation, suggesting that dityrosine generation by the H(2)O(2)/Cu system is independent of oxygen concentration. Moreover, the combination of copper ion with H(2)O(2) is the most effective system for dityrosine formation among various metal ions examined. The addition of reducing agents, glutathione or ascorbic acid, into the H(2)O(2)/Cu system suppressed the generation of the dityrosine moiety, suggesting effective quench of tyrosyl radicals by the reducing agents.  相似文献   

7.
It is shown that thiamine and its metabolites effect lactate dehydrogenase activity and lactate content in the tissues. Thiochrome and thiamine phosphate increase the lactate level in the liver and small intestine. The given effect correlates with the inhibition of the tissue and purified lactate dehydrogenase by thiochrome.  相似文献   

8.
The effects of four thiol reagents on the kinetics of polymerization of hemoglobin S have been studied in high phosphate buffer (1.8 M), in the presence (3 mM) or absence of sodium dithionite, depending on the reduction of mixed disulfides of Hb in the presence of this reducing agent. The effect of oxidized forms (methemoglobin) of HbS on the kinetics of aggregation of deoxyHbS was also studied because of the presence of 33% metHbS when HbS was modified by 4-aminophenyl disulfide. In the presence of sodium dithionite, the delay times prior to polymerization of deoxyHbS modified by N-ethylmaleimide, iodoacetamide and 4-aminophenyl disulfide were, respectively, 1.5-, 1.35- and 1.15-times longer than that of native deoxyHbS. The results indicate that the radicals bound to the cysteine beta 93 residue inhibit the contacts in the polymer formation to various extents but do not modify the size of the nuclei.  相似文献   

9.
Anticoenzyme action of new derivatives of thiamine: oxodihydrothiochrome and its mono- and diphosphoric esters has been studied in the experiments on mice. It is shown that the given compounds exert an inhibiting action on transketolase and pyruvate dehydrogenase and do not change activity of 2-oxoglutarate dehydrogenase in the animal organism. Antivitamin effect of the studied inhibitors is observed with the lower doses and in the earlier terms as compared with the other known inhibitors of thiamine-diphosphate-dependent enzymes. The preparations inhibit activity of the yeast pyruvate-decarboxylase by the mixed (with respect to thiamine-diphosphate) type (Ki for oxodihydrothiochrome and its mono- and diphosphoric esters: 2.3 x 10(-3), 7.2 x 10(-4), 5.6 x 10(-5) M, respectively). Possible mechanisms of the action of the mentioned compounds as thiamine antimetabolites are discussed.  相似文献   

10.
Alzheimer's disease (AD) is characterised by the formation of amyloid deposits composed primarily of the amyloid beta-peptide (Abeta). This peptide has been shown to bind redox active metals ions such as copper and iron, leading to the production of reactive oxygen species (ROS) and formation of hydrogen peroxide (H(2)O(2)). The generation of H(2)O(2) has been linked with Abeta neurotoxicity and neurodegeneration in AD. Because of the relative stability of a tyrosyl radical, the tyrosine residue (Tyr-10) is believed to be critical to the neurotoxicity of Abeta. This residue has also been shown to be important to Abeta aggregation and amyloid formation. It is possible that the formation of an Abeta tyrosyl radical leads to increased aggregation via the formation of dityrosine as an early aggregation step, which is supported by the identification of dityrosine in amyloid plaque. The role of dityrosine formation in Abeta aggregation and neurotoxicity is as yet undetermined, partly because there are no facile methods for the synthesis of Abeta dimers containing dityrosine. Here we report the use of horseradish peroxidase and H(2)O(2) to dimerise N-acetyl-L-tyrosine ethyl ester and apply the optimised conditions for dityrosine formation to fully unprotected Abeta peptides. We also report a simple fluorescent plate reader method for monitoring Abeta dimerisation via dityrosine formation.  相似文献   

11.
Melanosomes scavenged tyrosyl radical that was generated by ultraviolet irradiation of tyrosine. Purified mushroom tyrosinase also removed tyrosyl radical in a dose-dependent manner. To elucidate the underlying mechanism, we analyzed the reaction of mushroom tyrosinase with tyrosyl radical generated by horseradish peroxidase and hydrogen peroxide. Resting tyrosinase, which contained a small amount of oxytyrosinase, did not oxidize tyrosine to DOPAchrome until horseradish peroxidase exhausted H(2)O(2) and thereafter the enzyme recovered its full activity. During the inhibition period most tyrosine was converted to dityrosine, suggesting that only a small amount of tyrosyl radical was enough to interact with a fraction of tyrosinase which was in the active oxy-form. When horseradish peroxidase and H(2)O(2) were added to oxytyrosinase, which was prepared by allowing it to turn over beforehand, DOPAchrome production was abolished with an accelerated consumption of H(2)O(2). Dityrosine formation was totally suppressed and tyrosine concentration stayed constant during the inhibition period with a concomitant production of O(2). The results are accounted for by a mechanism in which tyrosyl radical is reduced to tyrosine by oxytyrosinase and the resulting met-form reacts with H(2)O(2) to return to the oxy-form.  相似文献   

12.
Uchida T  Mogi T  Kitagawa T 《Biochemistry》2000,39(22):6669-6678
Cytochrome bo from Escherichia coli, a member of the heme-copper terminal oxidase superfamily, physiologically catalyzes reduction of O(2) by quinols and simultaneously translocates protons across the cytoplasmic membrane. The reaction of its ferric pulsed form with hydrogen peroxide was investigated with steady-state resonance Raman spectroscopy using a homemade microcirculating system. Three oxygen-isotope-sensitive Raman bands were observed at 805/X, 783/753, and (767)/730 cm(-)(1) for intermediates derived from H(2)(16)O(2)/H(2)(18)O(2). The experiments using H(2)(16)O(18)O yielded no new bands, indicating that all the bands arose from the Fe=O stretching (nu(Fe)(=)(O)) mode. Among them, the intensity of the 805/X cm(-)(1) pair increased at higher pH, and the species giving rise to this band seemed to correspond to the P intermediate of bovine cytochrome c oxidase (CcO) on the basis of the reported fact that the P intermediate of cytochrome bo appeared prior to the formation of the F species at higher pH. For this intermediate, a Raman band assignable to the C-O stretching mode of a tyrosyl radical was deduced at 1489 cm(-)(1) from difference spectra. This suggests that the P intermediate of cytochrome bo contains an Fe(IV)=O heme and a tyrosyl radical like compound I of prostaglandin H synthase. The 783/753 cm(-)(1) pair, which was dominant at neutral pH and close to the nu(Fe)(=)(O) frequency of the oxoferryl intermediate of CcO, presumably arises from the F intermediate. On the contrary, the (767)/730 cm(-)(1) species has no counterpart in CcO. Its presence may support the branched reaction scheme proposed previously for O(2) reduction by cytochrome bo.  相似文献   

13.
Thiamine phosphate esters (thiamine monophosphate-TMP; thiamine diphosphate-TDP and thiamine triphosphate-TTP) were measured as their thiochrome derivatives by High Performance Liquid Chromatography in the brains of pyrithiamine-treated rats at various stages during the development of thiamine deficiency encephalopathy. Severe encephalopathy was accompanied by significant reductions of all three thiamine phosphate esters in brain. Neurological symptoms of thiamine deficiency appeared when brain levels of TMP and TDP fell below 15% of normal values. Activities of the TDP-dependent enzyme -ketoglutarate dehydrogenase were more severely reduced in thalamus compared to cerebral cortex, a less vulnerable brain structure. On the other hand, reductions of TTP, the non-cofactor form of thiamine, occurred to a greater extent in cerebral cortex than thalamus. Early reductions of TDP-dependent enzymes and the ensuing metabolic pertubations such as lactic acidosis impaired brain energy metabolism, and NMDA-receptor mediated excitotoxicity offer rational explanations for the selective vulnerability of brain structures such as thalamus to the deleterious effects of thiamine deficiency.  相似文献   

14.
Gel filtration and SDS-PAGE separation of hemoglobin (Hb) irradiated under argon or N2O show formation of covalent-aggregated Hb molecules. The production of covalent bonds is attributed mainly to the action of hydroxyl radicals, because addition of ethanol, a scavenger of these radicals, suppresses this reaction to a great extent. The oxidized heme iron forming metHb or hemichromes is found in all the separated fractions of irradiated Hb. It is also found that the radiation-modified Hb molecules exhibit a decrease of co-operative binding of oxygen.  相似文献   

15.
The reaction between mixed-valence (MV) cytochrome c oxidase from beef heart with H2O2 was investigated using the flow-flash technique with a high concentration of H2O2 (1 M) to ensure a fast bimolecular interaction with the enzyme. Under anaerobic conditions the reaction exhibits 3 apparent phases. The first phase (tau congruent with 25 micros) results from the binding of one molecule of H2O2 to reduced heme a3 and the formation of an intermediate which is heme a3 oxoferryl (Fe4+=O2-) with reduced CuB (plus water). During the second phase (tau congruent with 90 micros), the electron transfer from CuB+ to the heme oxoferryl takes place, yielding the oxidized form of cytochrome oxidase (heme a3 Fe3+ and CuB2+, plus hydroxide). During the third phase (tau congruent with 4 ms), an additional molecule of H2O2 binds to the oxidized form of the enzyme and forms compound P, similar to the product observed upon the reaction of the mixed-valence (i.e., two-electron reduced) form of the enzyme with dioxygen. Thus, within about 30 ms the reaction of the mixed-valence form of the enzyme with H2O2 yields the same compound P as does the reaction with dioxygen, as indicated by the final absorbance at 436 nm, which is the same in both cases. This experimental approach allows the investigation of the form of cytochrome c oxidase which has the heme a3 oxoferryl intermediate but with reduced CuB. This state of the enzyme cannot be obtained from the reaction with dioxygen and is potentially useful to address questions concerning the role of the redox state in CuB in the proton pumping mechanism.  相似文献   

16.
The radiolytic deamination and dephosphorylation of peptides and phosphate esters in oxygenated solutions are OH-induced and involve the formation and subsequent degradation of the peroxyl radicals RCONHC(O2)R2 and POC(O2)R2 respectively. Reaction analogues in the degradation chemistry of these peroxyl intermediates from various peptides and phosphate esters including protein and DNA are evaluated in detail. The evidence is that the reaction mechanisms recently proposed for removal of POC(O2)R2 radicals in the radiolytic scission of the DNA strand are identical in form with the mechanisms identified in earlier studies of RCONHC(O2)R2 radicals in the radiolytic cleavage of the peptide chain. The analogy includes the chemical forms of the final products and their specific yields.  相似文献   

17.
Bovine serum albumin (BSA) was used as a probe for the oxidation of proteins by hypervalent myoglobin species in solutions with pH from 5.3 to 7.7. The reaction between perferrylmyoglobin, *MbFe(IV)=O, and BSA was studied by activating metmyoglobin with equimolar amounts of hydrogen peroxide in the presence of BSA. A minor pH dependence was observed as judged from the formation of BSA-centered radicals, which were monitored at room temperature by electron spin resonance spectroscopy, and the formation of dityrosine. The reaction between ferrylmyoglobin, MbFe(IV)=O, and BSA was pH-dependent. BSA-centered radicals and dityrosine were formed in low levels at neutral pH and increased at low pH to the same levels as observed in the reaction of *MbFe(IV)=O with BSA. The present results demonstrate that protein-centered radicals can be formed from the non-radical MbFe(IV)=O under mildly acidic conditions, and this should be taken into account when considering oxidation in cellular compartments of low pH and in meat-related products.  相似文献   

18.
Tyrosyl free radicals generated by the peroxidase-catalyzed oxidation of peptide tyrosyl residues are known to yield the stable cross-linked product dityrosine. In the present report, horseradish peroxidase is used as a model of peroxidase to study oxidative modifications of non-protein cellular components. Tyrosyl free radicals promote, as many free radicals, the decay of β-phycoerythrin fluorescence emission, they oxidize NADH and ascorbic acid and initiate arachidonic acid peroxidation with formation of hydroperoxides and dienes. These results suggest that tyrosyl free radicals generated when tyrosine residues in protein and peptides are activated in vivo by peroxidase-H2O2 might undergo the peroxidation of membrane lipids.  相似文献   

19.
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the pi-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; alphaTyr42, alphaTrp14, betaTrp15, betaCys93, (alphaTyr24-alphaHis20), all in the alpha- and beta-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

20.
Malencik DA  Anderson SR 《Amino acids》2003,25(3-4):233-247
Summary. Dityrosine can be a natural component of protein structure, a product of environmental stress, or a product of in vitro protein modification. It is both a cross-link and a fluorescent probe that reports structural and functional information on the cross-linked protein molecule. Diverse reactions produce tyrosyl radicals, which in turn may couple to yield dityrosine. Identification and quantitation of dityrosine in protein hydrolysates usually employs reversed phase high pressure liquid chromatography (RP-HPLC) or gas chromatography. RP-HPLC of protein hydrolysates that have been derivatized with dabsyl chloride gives a complete amino acid analysis that includes dityrosine and 3-nitrotyrosine. Calmodulin, which contains a single pair of tyrosyl residues, undergoes both photoactivated and enzyme-catalyzed dityrosine formation. Polarization measurements, employing the intrinsic fluorescence of dityrosine, and catalytic activity determinations show how different patterns of inter- and intramolecular cross-linking affect the interactions of calmodulin with Ca2+ and enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号