首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet.  相似文献   

2.
A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C(5) maleimide (AF(546), AF(568)). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF(546), complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF(546/568) and dual-color detection provided strong evidence for a homodimeric association of CitS.  相似文献   

3.
Proteins utilizing pyridoxal 5'-phosphate as a coenzyme constitute a large superfamily and are currently classified into three functional groups and five structural fold types. Despite the variability of sequences and catalyzed reactions, they share relevant structural, dynamic and functional properties. Therefore, they constitute an optimal system to investigate the relative influence of primary sequence and coenzyme interactions on folding pathways, structural stability and enzymatic function. O-Acetylserine sulfhydrylase is a dimeric pyridoxal 5'-phosphate dependent enzyme that catalyzes the synthesis of L-cysteine from O-acetylserine and sulfide. The time-resolved fluorescence study of O-acetylserine sulfhydrylase unfolding, here reported, indicates that the coenzyme stabilizes the protein structure. The dependence on denaturant concentration of tryptophan lifetimes in the holo- and apo-enzyme demonstrates that the interactions with the coenzyme stabilize the C-terminal domain to a higher extent with respect to the N-terminal domain. This result is discussed in terms of a linkage between the differential stabilization brought about by the coenzyme and the different degrees of conformational flexibility required by the specialized functional role of distinct protein regions.  相似文献   

4.
The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.  相似文献   

5.
We examined the tryptophan decay kinetics of sarcoplasmic reticulum Ca2+-ATPase using frequency-domain fluorescence. Consistent with earlier reports on steady-state fluorescence intensity, our intensity decays reveal a reproducible and statistically significant 2% increase in the mean decay time due to calcium binding to specific sites involved in enzyme activation. This Ca2+ effect could not be eliminated with acrylamide quenching, which suggests a global effect of calcium on the Ca2+-ATPase, as opposed to a specific effect on a single water-accessible tryptophan residue. The tryptophan anisotropy decays indicate substantial rapid loss of anisotropy, which can be the result of either intramolecular energy transfer or a change in segmental flexibility of the ATPase protein. Energy transfer from tryptophan to TNP-ATP in the nucleotide binding domain, or to IEADANS on Cys-670 and -674, indicates that most tryptophan residues are 30 A or further away from these sites and that this distance is not decreased by Ca2+. In light of known structural features of the Ca2+-ATPase, the tryptophan fluorescence changes are attributed to stabilization of clustered transmembrane helices resulting from calcium binding.  相似文献   

6.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

7.
Conformation behavior of polyethylenimine has been examined by studies of the fluorescence characteristics of derivatives of the polymer containing pyrenyl ligands. Excimer formation within the macromolecular matrix serves as a sensitive probe of group proximities. The experimental observations combined with nearest neighbor analyses lead to quantitative assessments of the extent of interaction between polymer side chains.  相似文献   

8.
Formation of toxic oligomeric and fibrillar structures by the amyloid beta-protein (Abeta) is linked to Alzheimer's disease (AD). To facilitate the targeting and design of assembly inhibitors, intrinsic fluorescence was used to probe assembly-dependent changes in Abeta conformation. To do so, Tyr was substituted in Abeta40 or Abeta42 at position 1, 10 (wild type), 20, 30, 40, or 42. Fluorescence then was monitored periodically during peptide monomer folding and assembly. Electron microscopy revealed that all peptides assembled readily into amyloid fibrils. Conformational differences between Abeta40 and Abeta42 were observed in the central hydrophobic cluster (CHC) region, Leu17-Ala21. Tyr20 was partially quenched in unassembled Abeta40 but displayed a significant and rapid increase in intensity coincident with the maturation of an oligomeric, alpha-helix-containing intermediate into amyloid fibrils. This process was not observed during Abeta42 assembly, during which small decreases in fluorescence intensity were observed in the CHC. These data suggest that the structure of the CHC in Abeta42 is relatively constant within unassembled peptide and during the self-association process. Solvent accessibility of the Tyr ring was studied using a mixed solvent (dimethyl sulfoxide/water) system. [Tyr40]Abeta40, [Tyr30]Abeta42, and [Tyr42]Abeta42 all were relatively shielded from solvent. Analysis of the assembly dependence of the site-specific intrinsic fluorescence data suggests that the CHC is particularly important in controlling Abeta40 assembly, whereas the C-terminus plays the more significant role in Abeta42 assembly.  相似文献   

9.
An intrinsic steady-state fluorescent system for bovine adrenodoxin has been developed to study the protein structure in solution and the processes involved in protein unfolding. Since mature Adx contains no natural Trp residue as internal probe, all of the aromatic amino acids, tyrosine at position 82 and four phenylalanines at positions 11, 43, 59 and 64, were at each case replaced by tryptophan. The resulting single tryptophan containing mutants kept their biological function compared with the wild type. Molecular modeling studies verify thermal unfolding experiments which point to a dramatically reduced stability caused by steric hindrance only for mutant F59W. Fluorescence spectra, Stern-Volmer quenching constants, and fluorescence energy transfer calculations indicated the analyzed positions to be situated in solution in the same immediate environment as in the crystal structure. Unfolding experiments with Gdn-HCl and time-resolved stopped-flow measurements provide evidence for differential stability and a chronologically ordered unfolding mechanism of the different fluorescence probe positions in the protein.  相似文献   

10.
MARCKS-related protein (MRP) is a peripheral membrane protein whose binding to membranes is mediated by the N-terminal myristoyl moiety and a central, highly basic effector domain. MRP mediates cross-talk between protein kinase C and calmodulin and is thought to link the actin cytoskeleton to the plasma membrane. Since MRP contains no tryptophan residues, we mutated a phenylalanine in the effector domain to tryptophan (MRP F93W) and used fluorescence spectroscopy to monitor binding of the protein to phospholipid vesicles. We report in detail the evaluation procedure necessary to extract quantitative information from the raw data. The spectra of MRP F93W obtained in the presence of increasing amounts of lipid crossed at an isosbestic point, indicating a simple transition between two states: free and membrane-bound protein. The change in fluorescence toward values typical of a more hydrophobic environment was used to quantify membrane binding. The partition coefficient agreed well with values obtained previously by other methods. To study the interaction of the N-terminus of MRP with membranes, a tryptophan residue was also introduced at position 4 (MRP S4W). Our data suggest that only the myristoylated N-terminus interacted with liposomes. These results demonstrate the versatility of site-directed incorporation of tryptophan residues to study protein-membrane interactions.  相似文献   

11.
Studies on the dependence of indole and tryptophan fluorescence emission spectra on excitation wavelength, ex, show that the emission shifts to longer wavelengths for red-edge excitation in different solid and viscous solvents. In solid systems the spectral shifts for excitation in the range from 290 to 310 nm can reach tens of nm, and they are more significant than changes of ex. In a viscous medium the magnitude of this effect is shown to be directly related to the dipole-reorientational relaxation of solvent molecules in the environment of the chromophore, which allows the relaxation times to be estimated. The method involves simple steady-state measurements of fluorescence spectra at the maximum and at the red edge of the absorption band. Since it is not necessary to obtain information on the fluorescence spectra of completely relaxed states, this method for the estimation of relaxation times may have advantages in studies of proteins compared with the conventional relaxation shift method, and may produce complementary information to that obtained by nanosecond time-resolved spectroscopy.  相似文献   

12.
The picosecond time-resolved fluorescence decay data of nine single-tryptophan (trp) proteins and two multi-trp proteins in their native and denatured states were analyzed by the maximum entropy method (MEM). In the denatured state (6 M guanidine hydrochloride) a majority of the single-trp proteins show bimodal (at 25 degrees C) and trimodal (at 85 degrees C) distributions with similar patterns and similar values for average lifetimes. In the native state of the proteins the lifetime distributions were bimodal or trimodal. These results (multimodal distributions) are contradictory to the unimodal Lorentzian distribution of lifetimes reported for some proteins in the native and denatured states. MEM analysis gives a unimodal distribution of lifetimes only when the signal-to-noise ratio is poor in the time-resolved fluorescence decay data. The unimodal distribution model is therefore not realistic for proteins in the native and denatured states. The fluorescence decay components of the bi- or trimodal distribution are associated with the rotamer structures of the indole moiety when the protein is in the random coil state.  相似文献   

13.
The x-ray crystal structure of the serpin-proteinase complex is yet to be determined. In this study we have investigated the conformational changes that take place within antitrypsin during complex formation with catalytically inactive (thrombin(S195A)) and active thrombin. Three variants of antitrypsin Pittsburgh (an effective thrombin inhibitor), each containing a unique cysteine residue (Cys(232), Cys(P3'), and Cys(313)) were covalently modified with the fluorescence probe N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine. The presence of the fluorescent label did not affect the structure or inhibitory activity of the serpin. We monitored the changes in the fluorescence emission spectra of each labeled serpin in the native and cleaved state, and in complex with active and inactive thrombin. These data show that the serpin undergoes conformational change upon forming a complex with either active or inactive proteinase. Steady-state fluorescence quenching measurements using potassium iodide were used to further probe the nature and extent of this conformational change. A pronounced conformational change is observed upon locking with an active proteinase; however, our data reveal that docking with the inactive proteinase thrombin(S195A) is also able to induce a conformational change in the serpin.  相似文献   

14.
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.  相似文献   

15.
Second derivative fluorescence spectroscopy of tryptophan in proteins   总被引:2,自引:0,他引:2  
The second derivatives of N-acetyl- -tryptophan amide (AcTrpNH2) fluorescence spectra were characterised in order to describe changes in the tryptophan environments of proteins. This tryptophan model compound was studied in several media with different degrees of hydrophobicity. The effect of tyrosines on the derivative spectra was also determined in situations in which both tyrosine and tryptophan were excited. An analysis of fluorescence second derivative spectra suggests that AcTrpNH2 fluorescence emission is composed of two main bands. Increasing solvent polarity resulted in a red-shift by both bands and a relative increase in the emission efficiency of the shortest wavelength band. The applicability of fluorescence second derivative is shown through several examples. Turbidity observed in whole membrane extracts, for example, is eliminated by using second derivative spectra. Melittin, human and bovine serum albumins and the carboxypeptidase–PCI complex were studied as examples of the use of fluorescence second derivative spectroscopy to monitor changes in structural characteristics when these proteins were subjected to various transitions.  相似文献   

16.
Johnson JM  Ha T  Chu S  Boxer SG 《Biophysical journal》2002,83(6):3371-3379
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.  相似文献   

17.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

18.
Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, KD, of ASRT to 20?bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.  相似文献   

19.
Fluorescence quenching by the water-soluble ions I(-) and Cs(+) was used to probe solvent accessibility and polarity of the nucleotide/fluorescein isothiocyanate binding pocket of the purified soluble Ca(2+)-ATPase from plasma membranes. The E(1).Ca.CaM conformer was the least accessible state studied, presenting the lowest suppression constant (K(q)) for both I(-) (K(q) = 6.7 M(-)(1)) and Cs(+) (K(q) = 0.7 M(-)(1)). Accessibility to I(-) was similar for the E(2).VO(4) and E(1).Ca states (K(q) = 7.13 and 7.5 M(-)(1), respectively), whereas E(2) was slightly more accessible (K(q) = 9.1 M(-)(1)). The phosphorylated state E(2)-P presented the highest accessibility, with a K(q) of 16.5 M(-)(1), very near the K(q) of 20.3 M(-)(1) for free FITC. I(-) was unequivocally a better fluorescence quencher, being usually nearly 3-fold as efficient as Cs(+), as indicated by the K(q)(I(-))/K(q)(Cs(+)) ratio (R(q)). The advent of a positive charge cluster on the nucleotide/fluorescein binding pocket in different states was suggested by the increase in R(q), which reached a value as high as 9.5 for the E(1).Ca.CaM conformer. These results indicate (i) a very high water accessibility of the nucleotide/fluorescein pocket for E(2)-P that (ii) is more restricted on the free E(2) state and (iii) becomes rather lower for the E(1).Ca states. Additionally, a positive charge effect of amino acids on the nucleotide site, possibly related to ATP binding and phosphoryl transfer, appears in these E(1).Ca states, being absent in the phosphorylated and nonphosphorylated E(2) states.  相似文献   

20.
Zheng Z  Yang R  Bodner ML  Weliky DP 《Biochemistry》2006,45(43):12960-12975
The human immunodeficiency virus (HIV) fusion peptide (HFP) is the N-terminal apolar region of the HIV gp41 fusion protein and interacts with target cell membranes and promotes membrane fusion. The free peptide catalyzes vesicle fusion at least to the lipid mixing stage and serves as a useful model fusion system. For gp41 constructs which lack the HFP, high-resolution structures show trimeric protein and suggest that at least three HFPs interact with the membrane with their C-termini in close proximity. In addition, previous studies have demonstrated that HFPs which are cross-linked at their C-termini to form trimers (HFPtr) catalyze fusion at a rate which is 15-40 times greater than that of non-cross-linked HFP. In the present study, the structure of membrane-associated HFPtr was probed with solid-state nuclear magnetic resonance (NMR) methods. Chemical shift and intramolecular (13)CO-(15)N distance measurements show that the conformation of the Leu-7 to Phe-11 region of HFPtr has predominant helical conformation in membranes without cholesterol and beta strand conformation in membranes containing approximately 30 mol % cholesterol. Interstrand (13)CO-(13)CO and (13)CO-(15)N distance measurements were not consistent with an in-register parallel strand arrangement but were consistent with either (1) parallel arrangement with adjacent strands two residues out-of-register or (2) antiparallel arrangement with adjacent strand crossing between Phe-8 and Leu-9. Arrangement 1 could support the rapid fusion rate of HFPtr because of placement of the apolar N-terminal regions of all strands on the same side of the oligomer while arrangement 2 could support the assembly of multiple fusion protein trimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号