首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermal growth factor-seven transmembrane (EGF-TM7) family is a group of seven-span transmembrane receptors predominantly expressed by cells of the immune system. Family members CD97, EGF module-containing mucin-like receptor (EMR) 1, EMR2, EMR3, EMR4, and EGF-TM7-latrophilin-related protein are characterized by an extended extracellular region with a variable number of N-terminal EGF-like domains. EGF-TM7 receptors bind cellular ligands as demonstrated by the interaction of CD97 with decay accelerating factor (CD55) and dermatan sulfate. Investigating the effect of newly generated mAb on the migration of neutrophilic granulocytes, we here report for the first time in vivo data on the function of CD97. In dextran sulfate sodium-induced experimental colitis, we show that homing of adoptively transferred neutrophils to the colon was significantly delayed when cells were preincubated with CD97 mAb. The consequences of this defect in neutrophil migration for host defense are demonstrated in a murine model of Streptococcus pneumoniae-induced pneumonia. Mice treated with CD97 mAb to EGF domain 1 (1B2) and EGF domain 3 (1C5) displayed a reduced granulocytic inflammatory infiltrate at 20 h after inoculation. This was associated with a significantly enhanced outgrowth of bacteria in the lungs at 44 h and a strongly diminished survival. Together, these findings indicate an essential role for CD97 in the migration of neutrophils.  相似文献   

2.
The epidermal growth factor (EGF)-TM7 subgroup of G-protein-coupled receptors is composed predominantly of leukocyte-restricted glycoproteins defined by their unique hybrid structure, in which extracellular EGF-like domains are coupled to a seven-span transmembrane moiety via a mucin-like stalk. The EGF-TM7 group comprises mouse F4/80, human EGF module-containing mucin-like hormone receptor (EMR) 1, human EMR2, and human and mouse CD97, the genes for which map to human chromosome 19p13 and the syntenic regions of the mouse genome. In this study we describe the cloning and characterization of EMR3, a novel human EGF-TM7 molecule, and show the existence of its cellular ligand. The EMR3 gene maps closely to the existing members of the EGF-TM7 family on human chromosome 19p13.1 and, in common with other EGF-TM7 genes, is capable of generating different protein isoforms through alternative splicing. Two alternative splice forms have been isolated: one encoding a 652-amino acid cell surface protein consisting of two EGF-like domains, a mucin stalk, and a putative G-protein-coupled receptor domain and the other encoding a truncated soluble form containing only two EGF-like domains. As with other members of the EGF-TM7 family, EMR3 mRNA displays a predominantly leukocyte-restricted expression pattern, with highest levels in neutrophils, monocytes, and macrophages. Through the use of soluble EMR3 multivalent probes we have shown the presence of a ligand at the surface of monocyte-derived macrophages and activated human neutrophils. These interactions suggest a potential role for EMR3 in myeloid-myeloid interactions during immune and inflammatory responses.  相似文献   

3.
With the human and mouse genome projects now completed, the receptor repertoire of mammalian cells has finally been elucidated. The EGF-TM7 receptors are a family of class B seven-span transmembrane (TM7) receptors predominantly expressed by cells of the immune system. Within the large TM7 superfamily, the molecular structure and ligand-binding properties of EGF-TM7 receptors are unique. Derived from the processing of a single polypeptide, they are expressed at the cell surface as heterodimers consisting of a large extracellular region associated with a TM7 moiety. Through a variable number of N-terminal epidermal growth factor (EGF)-like domains, EGF-TM7 receptors interact with cellular ligands such as CD55 and chondroitin sulfate. Recent in vivo studies demonstrate a role of the EGF-TM7 receptor CD97 in leukocyte migration. The different number of EGF-TM7 genes in man compared with mice, the chimeric nature of EMR2 and the inactivation of human EMR4 point toward a still-evolving receptor family. Here we discuss the currently available information on this intriguing receptor family.  相似文献   

4.
Lin HH  Stacey M  Hamann J  Gordon S  McKnight AJ 《Genomics》2000,67(2):188-200
The epidermal growth factor (EGF)-TM7 proteins [EMR1, (EGF-like molecule containing mucin-like hormone receptor 1) F4/80, and CD97] constitute a recently defined class B GPCR subfamily and are predominantly expressed on leukocytes. These molecules possess N-terminal EGF-like domains coupled to a seven-span transmembrane (7TM) moiety via a mucin-like spacer domain. Genomic mapping analysis has suggested a possible EGF-TM7 gene family on the human chromosome 19p13 region. In this study, a new member of the EGF-TM7 family, EMR2, which shares strikingly similar molecular characteristics with CD97, is described. In addition to mapping closely to CD97 on human chromosome 19p13.1, EMR2 contains a total of five tandem EGF-like domains and expresses similar protein isoforms consisting of various numbers of EGF-like domains as a result of alternative RNA splicing. Furthermore, EMR2 and CD97 exhibit highly homologous EGF-like domains and share identical gene organization, indicating that both genes are the products of a recent gene duplication event. The homologous EGF-like domains enable the identification of both EMR2 and CD97 by monoclonal antibodies (mAbs) raised against the first EGF-like domain of CD97, whereas mAbs directed against the extracellular spacer domain of CD97 are able to differentiate these two proteins. Both EMR2 and CD97 are highly expressed in immune tissues; however, unlike CD97, which is ubiquitously expressed in most cell types, EMR2 expression is restricted to monocytes/Mφ and granulocytes. EMR2 fails to interact with CD55, the cellular ligand for CD97, suggesting the possibility of a different cellular ligand(s). EMR2 may therefore have a unique function in cells of monocyte/Mφ and granulocyte lineages.  相似文献   

5.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

6.
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.  相似文献   

7.
Overproduction of v-Crk, but not of c-Crk, in chicken embryo fibroblasts results in cell transformation. The transforming activity of v-Crk mutants correlates with their ability to cause increased tyrosine phosphorylation of specific cellular proteins, a property that depends on the binding of v-Crk to phosphotyrosine residues via its SH2 domain. In this study, proteins translated in rabbit reticulocyte lysates were used to analyze interactions between Crk derivatives and tyrosine-phosphorylated proteins, particularly the epidermal growth factor (EGF) receptor. The results demonstrate that the binding affinity of c-Crk is much lower than that of v-Crk, despite the fact that both proteins contain identical SH2 domains. Moreover, a 31-amino-acid N-terminal extension of c-Crk, resulting from upstream translational initiation at a CUG codon, significantly increases the ability of the resulting protein to bind to phosphotyrosine-containing proteins. Of those 31 amino acids, 24 can be found in the 27-amino-acid region between Gag and Crk sequences in v-Crk, and removal of this region results in a protein with lower affinity toward the EGF receptor. In addition, fusion of Gag to the amino terminus of c-Crk yields a protein with a binding activity that is lower than that of v-Crk but significantly higher than that of c-Crk without the fusion. These data suggest that sequences N terminal to the Crk SH2 regulate binding activity to tyrosine-phosphorylated proteins and that the amino acids encoded immediately 5' to the c-Crk initiator AUG specifically increase binding affinity. In contrast, deletion of one or two SH3 domains of c-Crk proteins did not change their affinity for the EGF receptor. These results were confirmed in vivo by using A431-derived cell lines overproducing either the chicken c-Crk protein or c-Crk with the 31-amino-acid N-terminal extension. Furthermore, the in vivo experiments suggest that binding of Crk proteins to the stimulated EGF receptor results in Crk phosphorylation and subsequent loss of binding affinity.  相似文献   

8.
Cultured NIH-3T3 cells were transfected with cDNA constructs encoding human epidermal growth factor-receptor (EGF-R)* and two deletion mutants in the extracellular portion of the receptor molecule. One mutant is devoid of 124 amino-terminal amino acids, and the other lacks 76 residues. Mutant receptors were not delivered to the cell surface unless the transfected cells contained also endogenous EGF-Rs, suggesting that receptor interaction complements the mutation and allows surface display of mutant receptors. Immunoprecipitation experiments revealed an association between mutant and endogenous EGF-Rs when both proteins were expressed in the same cell. Hence, receptor-oligomers may exist in the plane of the membrane even in the absence of ligand binding, and oligomerization may play a role in normal trafficking of EGF-Rs to the cell surface. Mutant receptors retained partial ligand binding activity as 125I-labeled EGF was covalently cross-linked to both mutant receptors, and EGF stimulated, albeit weakly, their protein tyrosine kinase activity. Both mutant EGF-Rs bind EGF with a 10-fold lower affinity than that of the solubilized wild type EGF-R. These results provide further evidence that the region flanked by the two cysteine-rich domains plays a crucial role in defining ligand-binding specificity of EGF-R.  相似文献   

9.
Identification of the residues in human CD4 critical for the binding of HIV   总被引:52,自引:0,他引:52  
The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.  相似文献   

10.
Binding of epidermal growth factor (EGF) to its receptor results in a cascade of events that culminate in cell division. The receptor is present on the cell surface in two forms of high and low affinity binding for EGF. EGF binding activates the receptor's intracellular tyrosine kinase activity and subsequently causes the receptor to be rapidly internalized into the cell via clathrin-coated pits. We have cloned the EGF receptor cDNA into a retroviral expression vector and made mutations in vitro to investigate the function of different receptor domains. Deletion of cytoplasmic sequences abolishes high but not low affinity sites as well as impairing the ability of the protein to internalize into cells. Thus, cytoplasmic sequences must be involved in the regulation of high affinity sites and are required for EGF-induced receptor internalization. A four amino acid insertion mutation at residue 708 abolishes the protein-tyrosine kinase activity of the immunoprecipitated receptor. However, this receptor mutant exhibits both the high and low affinity states, internalizes efficiently and is able to cause cells to undergo DNA synthesis in response to EGF. Another four amino acid insertion mutation (residue 888) abolishes protein-tyrosine kinase activity, high affinity binding, internalization and mitogenic responsiveness. Finally, a chimaeric receptor composed of the extracellular EGF binding domain and the cytoplasmic v-abl kinase region transforms Rat-I cells. This chimaeric receptor possesses intrinsic protein tyrosine kinase activity which cannot be regulated by EGF. Moreover, EGF fails to induce the internalization of the chimaeric receptor.  相似文献   

11.
Human complement receptor type 2 (CR2, CD21) is a cell surface receptor that binds three distinct ligands (complement C3d, Epstein-Barr virus gp350/220, and the low-affinity IgE receptor CD23) via the N-terminal two of fifteen or sixteen short consensus/complement repeat (SCR) domains. Here, we report biophysical studies of the CR2 SCR 1-2 domain binding to its ligand C3dg. Two recombinant forms of CR2 containing the SCR 1-2 and SCR 1-15 domains were expressed in high yield in Pichia pastoris and baculovirus, respectively. Circular dichroism spectroscopy showed that CR2 SCR 1-2 receptor possessed a beta-sheet secondary structure with a melting temperature of 59 degrees C. Using surface plasmon resonance, kinetic parameters for the binding of either CR2 SCR 1-2 or the full-length SCR 1-15 form of CR2 showed that the affinity of binding to immobilized C3d is comparable for the SCR 1-15 compared to the SCR 1-2 form of CR2. Unexpectedly, both the association and dissociation rates for the SCR 1-15 form were slower than for the SCR 1-2 form. These data show that the SCR 1-2 domains account for the primary C3dg binding site of CR2 and that the additional SCR domains of full-length CR2 influence the ability of CR2 SCR 1-2 to interact with its ligand. Studies of the pH and ionic strength dependence of the interaction between SCR 1-2 and C3d by surface plasmon resonance showed that this is influenced by charged interactions, possibly involving the sole His residue in CR2 SCR 1-2. Sedimentation equilibrium studies of CR2 SCR 1-2 gave molecular weights of 17 000, in good agreement with its sequence-derived molecular weight to show that this was monomeric. Its sedimentation coefficient was determined to be 1.36 S. The complex with C3d gave molecular weights in 50 mM and 200 mM NaCl buffer that agreed closely with its sequence-derived molecular weight of 50 600 and showed that a 1:1 complex had been formed. Molecular graphics views of homology models for the separate CR2 SCR 1 and SCR 2 domains showed that both SCR domains exhibited a distribution of charged groups throughout its surface. The single His residue is located near a long eight-residue linker between the two SCR domains and may influence the linker conformation and the association of C3d and CR2 SCR 1-2 into their complex. Sedimentation modeling showed that the arrangement of the two SCR domains in CR2 SCR 1-2 is highly extended in solution.  相似文献   

12.
Decay-accelerating factor (CD55) is a complement regulatory protein, which is expressed by most cells to protect them from complement-mediated attack. CD55 also binds CD97, an EGF-TM7 receptor constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells upon activation. Early results suggested that CD55 could further enhance T cell proliferation induced by phorbol ester treatment. The present study demonstrates that coengagement of CD55, using either cross-linking mAbs or its natural ligand CD97, and CD3 results in enhanced proliferation of human peripheral blood CD4(+) T cells, expression of the activation markers CD69 and CD25, and secretion of IL-10 and GM-CSF. Recently, an increase in T cell responsiveness in CD55(-/-) mice was shown to be mediated by a lack of complement regulation. In this study, we show that direct stimulation of CD55 on CD4(+) T cells with CD97 can modulate T cell activation but does not interfere with CD55-mediated complement regulation. Our results support a multifaceted role for CD55 in human T cell activation, constituting a further link between innate and adaptive immunity.  相似文献   

13.
The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system.  相似文献   

14.
The human leukocyte adhesion-G protein-coupled receptors (GPCRs), the epidermal growth factor (EGF)-TM7 proteins, are shown here to function as homo- and hetero-oligomers. Using cell surface cross-linking, co-immunoprecipitation, and fluorescence resonance energy transfer analysis of EMR2, an EGF-TM7 receptor predominantly expressed in myeloid cells, we demonstrate that it forms dimers in a reaction mediated exclusively by the TM7 moiety. We have also identified a naturally occurring but structurally unstable EMR2 splice variant that acts as a dominant negative modulator by dimerizing with the wild type receptor and down-regulating its expression. Additionally, heterodimerization between closely related EGF-TM7 members is shown to result in the modulation of expression and ligand binding properties of the receptors. These findings suggest that receptor homo- and hetero-oligomerization play a regulatory role in modulating the expression and function of leukocyte adhesion-GPCRs.  相似文献   

15.
CD55, or decay-accelerating factor (DAF), is a cell surface glycoprotein which regulates complement activity by accelerating the decay of C3/C5 convertases. Recently, we and others have established that this molecule acts as a cellular receptor for echovirus 7 and related viruses. DAF consists of five domains: four short consensus repeats (SCRs) and a serine/threonine-rich region, attached to the cell surface by a glycosylphosphatidyl inositol anchor. Chinese hamster ovary cells stably transfected with deletion mutants of DAF or DAF-membrane cofactor protein recombinants were analyzed for virus binding. The results indicate that the binding of echovirus 7 to DAF specifically requires SCR2, SCR3, and SCR4. There is also a nonspecific requirement for the S/T-rich region which probably functions to project the binding region away from the cell membrane. The three nonpeptide modifications of DAF, N-linked glycosylation, O-linked glycosylation, and the glycosylphosphatidyl inositol anchor, are not required for virus binding. The SCRs of membrane cofactor protein, the closest known relative of DAF, cannot substitute for those of DAF with retention of virus binding activity. The monoclonal antibody used to identify DAF as an echovirus receptor, and which inhibits binding of the virus (monoclonal antibody 854), binds to SCR3.  相似文献   

16.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

17.
CD19 is required for the development of B1 and marginal zone B cells, for Ab responses, and for B cell memory. CD19 immunoprecipitates contain a complex of cytoplasmic proteins, including Lyn, Vav, phospholipase Cgamma2 (PLCgamma2), Grb2, and the p85 subunit of phosphatidylinositol 3-kinase. Which of these bind directly to CD19 and the strengths of the interactions are unknown. These issues are important in understanding the signaling functions of CD19, which are crucial for normal B cell physiology. Using purified, recombinant proteins, we now show that each of these signaling proteins contains at least one Src homology 2 (SH2) domain that interacts directly with the phosphorylated CD19 cytoplasmic domain. The affinities of binding of the SH2 domains of Vav, p85, and Grb2 to CD19 are each in the nanomolar range by surface plasmon resonance (Biacore) analysis. Binding of Lyn and PLCgamma2 do not fit 1:1 modeling. However, analyses of binding data (Lyn) and competition experiments (PLCgamma2) suggest that these bind with comparable affinity. Competition experiments demonstrate that SH2 domains whose binding is dependent on the same CD19 tyrosine(s) compete for binding, but these SH2 domains do not impede binding of different SH2 domains to other CD19 tyrosines. We conclude that binding to the CD19 cytoplasmic domain is multimeric, high affinity, and competitive. The high affinity of the interactions also suggests that tyrosines that were nonessential in vivo are nevertheless functional. A preliminary structural model suggests that CD19 forms a signaling complex containing multiple cytoplasmic proteins in close proximity to each other and to the plasma membrane.  相似文献   

18.
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family of growth factors. The membrane-anchored form of HB-EGF (proHB-EGF) is mitogenically active to neighboring cells as well as being a precursor of the soluble form. In addition to its mitogenic activity, proHB-EGF has the property of binding to diphtheria toxin (DT), serving as the specific receptor for DT. Tetramembrane-spanning protein CD9, a member of the TM4 superfamily, is physically associated with proHB-EGF at the cell surface and up-regulates both mitogenic and DT binding activities of proHB-EGF. To understand this up-regulation mechanism, we studied essential regions of both CD9 and proHB-EGF for up-regulation. Immunoprecipitation experiments revealed that not only CD9 but also other TM4 proteins including CD63, CD81, and CD82 associate with proHB-EGF on the cell surface. However, these TM4 proteins did not up-regulate DT binding activity of proHB-EGF. Transfection of a series of chimeric constructs comprising CD9 and CD81 showed that the major extracellular domain of CD9 is essential for up-regulation. Assays of DT binding activity and juxtacrine mitogenic activity of the deletion mutants of proHB-EGF and chimeric molecules, derived from proHB-EGF and TGF-alpha, showed that the essential domain of proHB-EGF for up-regulation is the EGF-like domain. These results indicate that the interaction of the extracellular domains of both molecules is important for up-regulation.  相似文献   

19.
Mammalian Sprouty (Spry) proteins are now established as receptor tyrosine kinase-induced modulators of the Ras/mitogen-activated protein kinase pathway. Specifically, hSpry2 inhibits the fibroblast growth factor receptor (FGFR)-induced mitogen-activated protein kinase pathway but conversely prolongs activity of the same pathway following epidermal growth factor (EGF) stimulation, where activated EGF receptors are retained on the cell surface. In this study it is demonstrated that hSpry2 is tyrosine-phosphorylated upon stimulation by either FGFR or EGF and subsequently binds endogenous c-Cbl with high affinity. A conserved motif on hSpry2, together with phosphorylation on tyrosine 55, is required for its enhanced interaction with the SH2-like domain of c-Cbl. A hSpry2 mutant (Y55F) that did not exhibit an enhanced binding with c-Cbl failed to retain EGF receptors on the cell surface. Furthermore, individually mutating hSpry2 residues 52-59 to alanine indicated a tight correlation between their affinity for c-Cbl binding and their inhibition of ERK2 activity in the FGFR pathway. We postulate that tyrosine phosphorylation "activates" hSpry2 by enhancing its interaction with c-Cbl and that this interaction is critical for its physiological function in a signal-specific context.  相似文献   

20.
CD97, the archetypal member of the EGF-TM7 protein family, is constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells following activation. The key isoform of CD97 expressed on leukocytes binds the complement regulatory protein CD55 (also termed decay-accelerating factor). CD97 has been shown recently to mediate co-stimulation of T cells via CD55. Here, we demonstrate that blocking the interaction between CD55 on monocytes and CD97 on T cells leads to inhibition of proliferation and interferon-gamma secretion. This implies that bidirectional interactions between CD97 and CD55 are involved in T cell regulation. Structural studies presented here reveal the molecular basis for this activity. We have solved the structure of EMR2, a very close homolog of CD97, using x-ray crystallography. NMR-based chemical shift mapping of the EMR2-CD55 interaction has allowed us to generate a model for the CD97-CD55 complex. The structure of the complex reveals that the T cell and complement regulatory activities of CD55 occur on opposite faces of the molecule. This suggests that CD55 might simultaneously regulate both the innate and adaptive immune responses, and we have shown that CD55 can still regulate complement when bound to CD97.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号