首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthomonadins are yellow, membrane-bound pigments produced by members of the genus Xanthomonas. We identified an ethyl methanesulfonate-induced Xanthomonas oryzae pv. oryzae mutant (BXO65) that is deficient for xanthomonadin production and virulence on rice, as well as auxotrophic for aromatic amino acids (Pig(-) Vir(-) Aro(-)). Reversion analysis indicated that these multiple phenotypes are due to a single mutation. A genomic library of the wild-type strain was used to isolate a 7.0-kb clone that complements BXO65. By transposon mutagenesis, marker exchange, sequence analysis, and subcloning, the complementing activity was localized to a 849-bp open reading frame (ORF). This ORF is homologous to the aroE gene, which encodes shikimate dehydrogenase in various bacterial species. Shikimate dehydrogenase activity was present in the wild-type strain and the mutant with the complementing clone, whereas no activity was found in BXO65. This clone also complemented an Escherichia coli aroE mutant for prototrophy, indicating that aroE is functionally conserved in X. oryzae pv. oryzae and E. coli. The nucleotide sequence of the 2.9-kb region containing aroE revealed that a putative DNA helicase gene is located adjacent to aroE. Our results indicate that aroE is required for normal levels of virulence and xanthomonadin production in X. oryzae pv. oryzae.  相似文献   

2.
The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII, XorI XorII+ and XorI XorII) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI XorII and XorI+ XorII were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyltransferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea.  相似文献   

3.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Upon clip inoculation of rice leaves, Xoo causes typical V-shaped lesions whose leading edge moves through the mid-veinal region. We have isolated a virulence deficient mutant of Xoo, referred to as BXO808 that causes limited lesions which primarily extend through the side-veinal regions of rice leaves. Functional complementation studies identified a clone, pSR19, from a cosmid genomic library that restored wild-type virulence and lesion phenotype to BXO808. Transposon mutagenesis of the pSR19 clone, marker exchange experiments, and targeted mutagenesis, revealed that the BXO808 phenotype is due to mutation in the gltB/D genes of Xoo, which encode glutamate synthase subunits α and β, respectively. The gltB/D mutants that were generated in this study also exhibited virulence deficiency, an altered lesion phenotype and growth deficiency on minimal medium with low levels of ammonium as a sole nitrogen source. This is the first report that mutations in the gltB/D genes of Xoo cause virulence deficiency.  相似文献   

4.
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.  相似文献   

5.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a Tn5-induced virulence-deficient mutant (BXO1704) of X. oryzae pv. oryzae. The BXO1704 mutant exhibited growth deficiency in minimal medium but was proficient in inducing a hypersensitive response in a non-host tomato plant. Sequence analysis of the chromosomal DNA flanking the Tn5 insertion indicated that the Tn5 insertion is in the purH gene, which is highly homologous to purH genes of other closely related plant pathogenic bacteria Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris. Purine supplementation reversed the growth deficiency of BXO1704 in minimal medium. These results suggest that the virulence deficiency of BXO1704 may be due to the inability to use sufficient purine in the host.  相似文献   

6.
7.
Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens.  相似文献   

8.
9.
Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, is known to produce phytotoxic polysaccharides. The extracellular polysaccharide (EPS) was isolated from virulent (BXO1) and virulence-deficient gum G mutant (BXO1002) strains of X. oryzae pv. oryzae and characterized using fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR). Data from the FT-IR suggested that the aldehyde (R-CHO) group and C=O of acid anhydride are present in BXO1 but absent in BXO1002. The 1H-NMR spectra showed the presence of an acetyl amine of hexose or pentose, free amines of glucose, an β-anomeric carbon of hexose and pentose, hydrogen next to hydroxyl group, an acetyl amine of hexose and pentose in the polysaccharides of both BXO1 and BXO1002, and the absence of α-anomeric carbon of hexose or pentose and the glucuronic acid in the polysaccharides produced by BXO1002. The test for glucuronic acid also confirmed the absence of glucuronic acid in the polysaccharides of BXO1002 and the presence glucuronic acid (32 μg/mg) in the polysaccharides produced by BXO1. Received: 14 May 2002 / Accepted: 21 June 2002  相似文献   

10.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a serious disease of rice. A virulence- and xylanase-deficient mutant of Xoo was isolated following ethyl methane sulfonate (EMS) mutagenesis. A cosmid clone that restored virulence and xylanase secretion was obtained from a genomic library by functional complementation. Transposon mutagenesis and marker exchange studies revealed genes on the cloned DNA that were required for xylanase production and virulence. Sequence analysis with transposon-specific primers revealed that these genes were homologues of xps F and xps D, which encode components of a protein secretion system in Xanthomonas campestris pv. campestris. Enzyme assays showed xylanase accumulation in the periplasmic space and cytoplasm of the xps F mutant and the complementing clone restored transport to the extracellular space.  相似文献   

11.
Three exopolysaccharide (EPS)- and virulence-deficient mutants of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, were isolated by Tn5 mutagenesis. These insertions are not located within the gum gene cluster. A 40-kb cosmid clone that restored EPS production and virulence to all three mutants was isolated, and the three transposon insertions were localized to contiguous 4.3- and 3.5-kb EcoRI fragments that are included in this clone. Sequence data indicate that two of the transposon insertions are in genes that encode a putative sugar nucleotide epimerase and a putative glycosyl transferase, respectively; the third insertion is located between the glycosyl transferase gene and a novel open reading frame (ORF). A 5.5-kb genomic region in which these three ORFs are located has a G+C content of 5-1.7%, quite different from the G+C content of approximately 65.0% that is typical of X. oryzae pv. oryzae. Homologues of this locus have not yet been reported in any other xanthomonad.  相似文献   

12.
Xanthomonadins are membrane-bound, brominated, aryl-polyene pigments specific to the genus Xanthomonas. We have characterized a genetic locus (pig) from Xanthomonas oryzae pv. oryzae which contains four open reading frames (ORFs) that are essential for xanthomonadin production. Three of these ORFs are homologous to acyl carrier proteins, dehydratases, and acyl transferases, suggesting a type II polyketide synthase pathway for xanthomonadin biosynthesis. The fourth ORF has no homologue in the database. For the first time, we report that a putative cytoplasmic membrane protein encoded in the pig locus is required for outer membrane localization of xanthomonadin in X. oryzae pv. oryzae. We also report the identification of a novel 145-bp palindromic Xanthomonas repetitive intergenic consensus element that is present in two places in the pig locus. We estimate that more than 100 copies of this element might be present in the genome of X. oryzae pv. oryzae and other xanthomonads.  相似文献   

13.
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. We demonstrated earlier that the type II secretion system (T2S) is important for virulence of X. oryzae pv. oryzae and that several proteins, including a xylanase, are secreted through this system. In this study, the xynB gene encoding for the secreted xylanase was cloned as a 6.9-kb EcoRI fragment (pRR7) that also included a paralog called xynA. As in X. oryzae pv. oryzae, xynA and xynB are adjacent to each other in X. axonopodis pv. citri, whereas only the xynA homolog is present in X. campestris pv. campestris. Mutations in xynB but not xynA affect secreted xylanase activity. Western blot analysis using anti-XynB antibodies on exudates from infected rice leaves indicated that this xylanase is expressed during in planta growth. Another T2S-secreted protein was identified to be a lipase/esterase (LipA) based on the sequence tags obtained by tandem mass spectrometry analysis and biochemical assays. Mutations in either xynB or lipA partially affected virulence. However, a lipA-xynB double mutant was significantly reduced for virulence, and the pRR7 clone containing an intact xynB gene could complement the virulence-deficient phenotype of the lipA-xynB mutant. Our results suggest that there is functional redundancy among the T2S secreted proteins of X. oryzae pv. oryzae in promoting virulence on rice.  相似文献   

14.
用硫酸二乙酯(DES)诱变水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,简称Xoo)和条斑病细菌(Xanthomonas oryzae pv. oryzicola, 简称Xooc),分别得到5株和13株黄色素缺失突变体,其中来自Xooc的M6和M12 还丧失了对水稻的致病性和在烟草上激发过敏反应的能力。以Xooc黄色素缺失突变体M51为受体菌交叉互补从Xoo JXOIII基因文库中筛选出一个黄色素合成相关的基因克隆pA341,以Xoo黄色素缺失突变体M1071为受体菌,从Xooc RS105基因文库中获得了一个黄色素合成相关的基因克隆pA270。功能互补显示,18株黄色素缺失突变体中的10株能分别被pA341和 pA270互补后正常产生黄色素,但这两个克隆不能同时互补同一株黄色素缺失突变体。能被pA341互补的黄色素缺失突变体M6没有恢复对水稻的致病性和在烟草上激发过敏反应,表明黄色素合成相关基因与hrp基因间不存在相关性。斑点杂交结果表明,pA270与pA341之间没有同源性。pA270亚克隆结果显示,与黄色素合成相关的基因约11.6kb大小,以基因簇的形式存在,不仅决定了黄色素的产生,还影响黄色素合成的数量和质量(吸收峰)。在紫外光条件下,黄色素能够提高菌体的存活率,提示黄色素对病原细菌有保护作用。  相似文献   

15.
Xanthomonas oryzae pv. oryzae causes bacterial blight in rice, and this bacterial blight has been widely found in the major rice-growing areas. We constructed a transposon mutagenesis library of X. oryzae pv. oryzae and identified a mutant strain (KXOM9) that is deficient for pigment production and virulence. Furthermore, the KXOM9 mutant was unable to grow in minimal medium lacking aromatic amino acids. Thermal asymmetric interlaced-PCR and sequence analysis of KXOM9 revealed that the transposon was inserted into the aroC gene, which encodes a chorismate synthase in various bacterial pathogens. In planta growth assays revealed that bacterial growth of the KXOM9 mutant in rice leaves was severely reduced. Genetic complementation of this mutant with a 7.9-kb fragment containing aroC restored virulence, pigmentation, and prototrophy. These results suggest that the aroC gene plays a crucial role in the growth, attenuation of virulence, and pigment production of X. oryzae pv. oryzae.  相似文献   

16.
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein–protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop–pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.

A complex system of genetic interactions leads to reciprocal adaptation between rice and its bacterial pathogen, Xanthomonas oryzae pv. oryzae.  相似文献   

17.
By screening a transposon-induced mutant library of Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, we have identified a novel 5.241-kb open reading frame (ORF) named xadM that is required for optimum virulence and colonization. This ORF encodes a protein, XadM, of 1,746 amino acids that exhibits significant similarity to Rhs family proteins. The XadM protein contains several repeat domains similar to a wall-associated surface protein of Bacillus subtilis, which has been proposed to be involved in carbohydrate binding. The role of XadM in X. oryzae pv. oryzae adhesion was demonstrated by the impaired ability of an xadM mutant strain to attach and form biofilms. Furthermore, we show that XadM is exposed on the cell surface and its expression is regulated by growth conditions and plays an important role in the early attachment and entry inside rice leaves. Interestingly, XadM homologs are present in several diverse bacteria, including many Xanthomonas spp. and animal-pathogenic bacteria belonging to Burkholderia spp. This is the first report of a role for XadM, an Rhs family protein, in adhesion and virulence of any pathogenic bacteria.  相似文献   

18.
Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, is known to produce phytotoxic polysaccharides. The extracellular polysaccharide (EPS) was isolated from virulent (BXO1) and virulence-deficient gum G mutant (BXO1002) strains of X. oryzae pv. oryzae and characterized using fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR). Data from the FT-IR suggested that the aldehyde (R-CHO) group and C=O of acid anhydride are present in BXO1 but absent in BXO1002. The (1)H-NMR spectra showed the presence of an acetyl amine of hexose or pentose, free amines of glucose, an beta-anomeric carbon of hexose and pentose, hydrogen next to hydroxyl group, an acetyl amine of hexose and pentose in the polysaccharides of both BXO1 and BXO1002, and the absence of alpha-anomeric carbon of hexose or pentose and the glucuronic acid in the polysaccharides produced by BXO1002. The test for glucuronic acid also confirmed the absence of glucuronic acid in the polysaccharides of BXO1002 and the presence glucuronic acid (32 microg/mg) in the polysaccharides produced by BXO1.  相似文献   

19.
 A high level of genetic polymorphism was detected among Indian isolates of Xanthomonas oryzae pv. oryzae using hypervariable probes such as a microsatellite oligonucleotide, probe (TG)10, a human minisatellite probe, pV47, an avirulence gene probe, avrXa10 and a repeat clone, pBS101. These DNA probes detected multiple loci in the bacterial genome generating complex DNA fingerprints and differentiated all of the bacterial isolates. Analysis of fingerprints indicated that pV47, (TG)10 and pBS101 have a lower probability of identical match than avrXa10 and therefore are potential probes for DNA fingerprinting and variability analysis of Xanthomonas oryzae pv. oryzae pathogen populations. Cluster analysis based on hybridization patterns using all of the above probes showed five groups at 56% similarity. Studies on the methylation patterns of isolates representing the three important races of X. oryzae pv. oryzae indicated more methylation in the most virulent isolate, suggesting a possible role of methylation in pathogenicity. Received: 8 December 1996 / Accepted: 20 December 1996  相似文献   

20.
Xanthomonas oryzae pv. oryzicola, the cause of bacterial leaf streak in rice, possesses clusters of hrp genes that determine its ability to elicit a hypersensitive response (HR) in nonhost tobacco and pathogenicity in host rice. A 27-kb region of the genome of X. oryzae pv. oryzicola (RS105) was identified and sequenced, revealing 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes and 7 regulatory plant-inducible promoter boxes. While the region from hpa2 to hpaB and the hrpF operon resembled the corresponding genes of other xanthomonads, the hpaB-hrpF region incorporated an hrpE3 gene that was not present in X. oryzae pv. oryzae. We found that an hrpF mutant had lost the ability to elicit the HR in tobacco and pathogenicity in adult rice plants but still caused water-soaking symptoms in rice seedlings and that Hpa1 is an HR elicitor in nonhost tobacco whose expression is controlled by an hrp regulator, HrpX. Using an Hrp phenotype complementation test, we identified a small hrp cluster containing the hrpG and hrpX regulatory genes, which is separated from the core hrp cluster. In addition, we identified a gene, prhA (plant-regulated hrp), that played a key role in the Hrp phenotype of X. oryzae pv. oryzicola but was neither in the core hrp cluster nor in the hrp regulatory cluster. A prhA mutant failed to reduce the HR in tobacco and pathogenicity in rice but caused water-soaking symptoms in rice. This is the first report that X. oryzae pv. oryzicola possesses three separate DNA regions for HR induction in nonhost tobacco and pathogenicity in host rice, which will provide a fundamental base to understand pathogenicity determinants of X. oryzae pv. oryzicola compared with those of X. oryzae pv. oryzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号