首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neurotropic Borna disease virus (BDV) is unusual in that it can persistently infect neurons of the central nervous system (CNS) without causing general cell death, reflecting its favourable adaptation to the brain. The activity-dependent enhancement of neuronal network activity is however disturbed after BDV infection, possibly by its effect on the protein kinase C signalling pathway. The best model for studying BDV, which has a non-cytolytic replication strategy in primary neurons, is the rat. Infection of adult rats results in a fatal immune-mediated disease, whereas BDV establishes persistent infection of the brain in newborn rats resulting in progressive neuronal cell loss in defined regions of the CNS. Our recently developed system of BDV-infected hippocampal slice cultures has clearly shown that the onset of granule cell loss begins after the formation of the mossy fibre projection. Quantitative analysis has revealed a significant increase in synaptic density on identified remaining granule cell dendrites at 6?weeks after infection, followed by a decline. Granule cells are the major target of entorhinal afferents. However, despite an almost complete loss of dentate granule cells during BDV infection, entorhinal axons persist in their correct layer, both in vivo and in slice cultures, possibly exploiting rewiring capabilities and thereby allowing new synapse formation with available targets. These morphological observations, together with electrophysiological and biochemical data, indicate that BDV is a suitable model virus for studying virus-induced morphological and functional changes of neurons and connectivity patterns.  相似文献   

2.
3.
Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)–dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons.  相似文献   

4.
Synaptic pathology in Borna disease virus persistent infection   总被引:7,自引:0,他引:7       下载免费PDF全文
Borna disease virus (BDV) infection of newborn rats leads to a persistent infection of the brain, which is associated with behavioral and neuroanatonomical abnormalities. These disorders occur in the absence of lymphoid cell infiltrates, and BDV-induced cell damage is restricted to defined brain areas. To investigate if damage to synaptic structures anteceded neuronal loss in BDV neonatally infected rats, we analyzed at different times postinfection the expression levels of growth-associated protein 43 and synaptophysin, two molecules involved in neuroplasticity processes. We found that BDV induced a progressive and marked decrease in the expression of these synaptic markers, which was followed by a significant loss of cortical neurons. Our findings suggest that BDV persistent infection interferes with neuroplasticity processes in specific cell populations. This, in turn, could affect the proper supply of growth factors and other molecules required for survival of selective neuronal populations within the cortex and limbic system structures.  相似文献   

5.
Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18-1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders.  相似文献   

6.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

7.
博尔纳病病毒(Borna Disease Virus,BDV)是一种具有高度嗜神经性的病毒。近年,有大量研究证实该病毒感染与人神经精神疾病的发生有关。但其确切机制仍未明了。一些研究认为BDV感染对中枢神经系统神经元可塑性的影响可能是其致病的重要基础。近年许多学者通过对沙鼠、小鼠、大鼠及转基因鼠等各种BDV感染模型的研究,进一步揭示了BDV感染对神经元可塑性影响的分子机制。结果发现BDV感染主要通过对星形胶质细胞功能的影响、干预HMGB 1蛋白以及神经营养因子信号转导等途径干预神经元的可塑性,影响脑内神经元的功能及其存活和发育,从而引起脑功能损害,导致宿主精神、行为异常。今后随着新的BDV转基因模型的成功建立将进一步揭示BDV感染对神经元可塑性影响的分子机制,给临床预防和治疗博尔纳病提供理论基础。  相似文献   

8.
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage.  相似文献   

9.
In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a post-maturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus.  相似文献   

10.
Borna disease virus (BDV) infects cells of the nervous system in a wide range of species. Previous work suggests that there are differences in BDV replication in neuronal cells and glial cells. Many neurons are lysed by the immunopathologic response to BDV; lysis of dentate gyrus neurons in the absence of encephalitis is seen in rats inoculated with BDV as neonates. In contrast, persistently BDV-infected astrocytes increase over the course of BDV infection. Therefore, we compared BDV replication in neuronal (SK-N-SH and SK-N-SHEP) and astrocytic (C6) cell lines. While SK-N-SH cells produced more infectious virions per cell, the C6 cells contained more BDV proteins and RNA. BDV sequences in the supernatants of both cell types were identified, despite low titers of infectious virus, suggesting the release of incomplete virions into the medium. C6 cells secreted a factor or factors into the medium that enhanced the production of BDV proteins and RNA in other cell lines. In addition, nerve growth factor treatment produced the same enhancement. Thus, BDV replication in certain neural cells in vitro may be linked to the production of cell-specific factors which affect viral replication.  相似文献   

11.
Persistence of Borna disease virus (BDV) in the central nervous system causes damage to specific neuronal populations. BDV is noncytopathic, and the mechanisms underlying neuronal pathology are not well understood. One hypothesis is that infection affects the response of neurons to factors that are crucial for their proliferation, differentiation, or survival. To test this hypothesis, we analyzed the response of PC12 cells persistently infected with BDV to the neurotrophin nerve growth factor (NGF). PC12 is a neural crest-derived cell line that exhibits features of neuronal differentiation in response to NGF. We report that persistence of BDV led to a progressive change of phenotype of PC12 cells and blocked neurite outgrowth in response to NGF. Infection down-regulated the expression of synaptophysin and growth-associated protein-43, two molecules involved in neuronal plasticity, as well as the expression of the chromaffin-specific gene tyrosine hydroxylase. We showed that the block in response to NGF was due in part to the down-regulation of NGF receptors. Moreover, although BDV caused constitutive activation of the ERK1/2 pathway, activated ERKs were not translocated to the nucleus efficiently. These observations may account for the absence of neuronal differentiation of persistently infected PC12 cells treated with NGF.  相似文献   

12.
Borna disease virus (BDV) frequently causes meningoencephalitis and fatal neurological disease in young but not old mice of strain MRL. Disease does not result from the virus-induced destruction of infected neurons. Rather, it is mediated by H-2(k)-restricted antiviral CD8 T cells that recognize a peptide derived from the BDV nucleoprotein N. Persistent BDV infection in mice is not spontaneously cleared. We report here that N-specific vaccination can protect wild-type MRL mice but not mutant MRL mice lacking gamma interferon (IFN-gamma) from persistent infection with BDV. Furthermore, we observed a significant degree of resistance of old MRL mice to persistent BDV infection that depended on the presence of CD8 T cells. We found that virus initially infected hippocampal neurons around 2 weeks after intracerebral infection but was eventually cleared in most wild-type MRL mice. Unexpectedly, young as well as old IFN-gamma-deficient MRL mice were completely susceptible to infection with BDV. Moreover, neurons in the CA1 region of the hippocampus were severely damaged in most diseased IFN-gamma-deficient mice but not in wild-type mice. Furthermore, large numbers of eosinophils were present in the inflamed brains of IFN-gamma-deficient mice but not in those of wild-type mice, presumably because of increased intracerebral synthesis of interleukin-13 and the chemokines CCL1 and CCL11, which can attract eosinophils. These results demonstrate that IFN-gamma plays a central role in host resistance against infection of the central nervous system with BDV and in clearance of BDV from neurons. They further indicate that IFN-gamma may function as a neuroprotective factor that can limit the loss of neurons in the course of antiviral immune responses in the brain.  相似文献   

13.
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.  相似文献   

14.
The nucleoprotein (N) of Borna disease virus (BDV) is the major target of the disease-inducing antiviral CD8 T-cell response in the central nervous system of mice. We established two transgenic mouse lines which express BDV-N in either neurons (Neuro-N) or astrocytes (Astro-N). Despite strong transgene expression, neurological disease or gross behavioral abnormalities were not observed in these animals. When Neuro-N mice were infected as adults, replication of BDV was severely impaired and was restricted to brain areas with a low density of transgene-expressing cells. Notably, the virus failed to replicate in the transgene-expressing granular and pyramidal neurons of the hippocampus (which are usually the preferred host cells of BDV). When Neuro-N mice were infected within the first 5 days of life, replication of BDV was not suppressed in most neurons, presumably because the onset of transgene expression in the brain occurred after these cells became infected with BDV. Astro-N mice remained susceptible to BDV infection, but they were resistant to BDV-induced neurological disorder. Unlike their nontransgenic littermates, Neuro-N mice with persistent BDV infection did not develop neurological disease after immunization with a vaccinia virus vector expressing BDV-N. In contrast to the situation in wild-type mice, this treatment also failed to induce N-specific CD8 T cells in the spleens of both transgenic mouse lines. Thus, while resistance to BDV infection in N-expressing neurons appeared to result from untimely expression of a viral nucleocapsid component, the resistance to BDV-induced neuropathology probably resulted from immunological tolerance.  相似文献   

15.
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model''s primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.  相似文献   

16.
Granule cells are major targets of entorhinal afferents terminating in a laminar fashion in the outer molecular layer of the dentate gyrus. Since Borna disease virus (BDV) infection of newborn rats causes a progressive loss of granule cells in the dentate gyrus, entorhinal fibres become disjoined from their main targets. We have investigated the extent to which entorhinal axons react to this loss of granule cells. Unexpectedly, anterograde DiI tracing has shown a prominent layered termination of the entorhinal projection, despite an almost complete loss of granule cells at 9 weeks after infection. Combined light- and electron-microscopic analysis of dendrites at the outer molecular layer of the dentate gyrus at 6 and 9 weeks post-infection has revealed a transient increase in the synaptic density of calbindin-positive granule cells and parvalbuminergic neurons after 6 weeks. In contrast, synaptic density reaches values similar to those of uninfected controls 9 weeks post-infection. These findings indicate that, after BDV infection, synaptic reorganization processes occur at peripheral dendrites of the remaining granule cells and parvalbuminergic neurons, including the unexpected persistence of entorhinal axons in the absence of their main targets.  相似文献   

17.
Borna disease virus (BDV), a nonsegmented, negative-stranded (NNS) RNA virus, causes central nervous system (CNS) disease in a broad range of vertebrate species, including felines. Both viral and host factors contribute to very diverse clinical and pathological manifestations associated with BDV infection. BDV persistence in the CNS can cause neurobehavioral and neurodevelopmental abnormalities in the absence of encephalitis. These BDV-induced CNS disturbances are associated with altered cytokine and neurotrophin expression, as well as cell damage that is very restricted to specific brain regions and neuronal subpopulations. BDV also targets astrocytes, resulting in the development of prominent astrocytosis. Astrocytes play essential roles in maintaining CNS homeostasis, and disruption of their normal activities can contribute to altered brain function. Therefore, we have examined the effect of BDV infection on the astrocyte's physiology. We present here evidence that BDV can establish a nonlytic chronic infection in primary cortical feline astrocytes that is associated with a severe impairment in the astrocytes' ability to uptake glutamate. In contrast, the astrocytes' ability to uptake glucose, as well as their protein synthesis, viability, and rate of proliferation, was not affected by BDV infection. These findings suggest that, in vivo, BDV could also affect an important astrocyte function required to prevent neuronal excitotoxicity. This, in turn, might contribute to the neuropathogenesis of BDV.  相似文献   

18.
Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection.  相似文献   

19.
Borna disease virus (BDV) can persistently infect the central nervous system (CNS) of mice. The infection remains nonsymptomatic as long as antiviral CD8 T cells do not infiltrate the infected brain. BDV mainly infects neurons which reportedly carry few, if any, major histocompatibility complex class I molecules on the surface. Therefore, it remains unclear whether T cells can recognize replicating virus in these cells or whether cross-presentation of viral antigen by other cell types is important for immune recognition of BDV. To distinguish between these possibilities, we used two lines of transgenic mice that strongly express the N protein of BDV in either neurons (Neuro-N) or astrocytes (Astro-N). Since these animals are tolerant to the neo-self-antigen, we adoptively transferred T cells with specificity for BDV N. In nontransgenic mice persistently infected with BDV, the transferred cells accumulated in the brain parenchyma along with immune cells of host origin and efficiently induced neurological disease. Neurological disease was also observed if antiviral T cells were injected into the brains of Astro-N or Neuro-N but not nontransgenic control mice. Our results demonstrate that CD8 T cells can recognize foreign antigen on neurons and astrocytes even in the absence of infection or inflammation, indicating that these CNS cell types are playing an active role in immune recognition of viruses.  相似文献   

20.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号