首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circular dichroism spectra of liquid-crystalline dispersions obtained by phase exclusion of linear double-stranded DNA molecules from aqueous saline solutions of polyethylene glycol (120 ≤ CPEG ≤ 300 mg/mL) have been investigated. The formation of liquid-crystalline dispersions at polyethylene glycol concentrations ranging from 120 to 200 mg/mL was accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism; this is indicative of cholesteric packing of the double stranded DNA molecules in the particles of the dispersion. Liquid-crystalline dispersions formed at PEG concentrations higher than 220 mg/mL and room temperature did not show any abnormal bands in the circular dichroism spectra; this is indicative of hexagonal packing of double-stranded DNA molecules in the particles of the dispersions. Heating of optically inactive liquid crystal dispersions induced a transition of the dispersions into a different state accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism. This transition is considered within the concept of the transformation of a hexagonal packing of DNA molecules into a cholesteric packing. A qualitative mechanism of such a transition is proposed that is formulated in the terms of the “quasinematic” layers of double-stranded DNA molecules that change their spatial orientation under the competing influences of the osmotic pressure of the solvent, orientational elasticity of the cholesteric packing, and thermal fluctuations.  相似文献   

2.
The ultraviolet absorption, linear dichroism, circular dichroism, and oriented circular dichroism of collagen are reported and the spectra are resolved into a self-consistent set of bands in accord with exciton theory. The parallel band at 200 nm has 40% of the π → π* intensity; the perpendicular band is placed at 189 nm yielding a splitting of 2700 cm?1. The circular dichroism is resolved into two Gaussians at λ and λτ (rotational strengths +14 × 10?40 and ?32 × 10?40 esu2. cm2) plus a large non-Gaussian (“helix”) band with ampplitude ?25,000° at 201 nm. These data appear to be in reasonably good accord with recent calculations. Measurements of the absorption, linear dichroism and circular dichroism of polyproline I and II are also reported and are resolved into their component bands. Polyproline I is in good accord with exciton theory, whereas polyproline II remains unsatisfactory.  相似文献   

3.
The ability of oligodesoxyribonucleotides of various chain lengths to form complexes has been compared with that of oligoribonucleotides. Four series of oligonucleotidcs were prepared and investigated, i.e., dCn at acid pH versus rCn, dAn and dTn versus. rAn and rUn at neutral pH. The results indicate that in dilute solution, the formation of complexes is greatly facilitated in the case of desoxyoligomers and occurs for shorter oligomere than in the corresponding ribooligomers. The spectrophotometric titration of deoxyribooligo C indicates the appearance of two pK values in the 4–5 pH region characteristic of the double-stranded form, which occurs for much shorter dCn than rCn. The circular dichroism (CD.) spectra of deoxycytidylies in dilute solution starting from the trimer are conservative, characteristic of the double-stranded helical form of poly C at acid pH. In contrast, the CD spectra of a series of corresponding ribo Cn, under identical conditions is of nonconservative character similar to that of the single-stranded form of poly C at neutral pH, but differs in the band position. This spectrum is called intermediate. Only at higher concentrations of oligonucleotidcs (i.e., 10?3Minstead of 10?4M) does the circular dichroism spectrum of longer ribocytidylics assume conservative character. Thermal denaturation of deoxycytidylces at acid pH are strongly dependent on chain length and concentration, its one would expect for a cooperative helix-coil transition. The circular dichroism spectra measured at different temperatures shows one isosbestic point. In dilute solution, the standard-state enthalpy change found was 5–6 kcal/mole for higher oligomers (dC7). These properties are all in agreement with a structural transition from the d-Cn double-stranded form to a coil for n > 3. Studies of dAn and dTn in solutions of high ionic strength at low temperature indicate that complex formation occurs already at the level of trimer and for high oligomers. Under identical conditions a complex between rAn and rUn is detected only for oligomers longer than the hexamer. The nature of the “intermediate” form of oligoribo C at acid pH and low temperature was investigated by sedimentation and circular dichroism. A model of rCn is proposed of linear molecules which are partially double-stranded and partially single-stranded, which probably are slowly rearranged by “slippage” into a regular-double-stranded helical form.  相似文献   

4.
We have calculated the uv linear dichroism for the A- and B-forms of DNA using π-π* transition moments and band components determined from the free DNA bases. The reduced dichroism (LDR) as a function of wavelength is estimated is in the 220–300-nm region, for both the oriented-gas model and a simple exciton model. For B-form DNA, LDR is obtained to ?1.48S (S being the orientation factor) over the whole wavelenth region by both models. For A-form DNA, LDR is not constant, but changes monotonically from about ?1.15S at 220 nm to about ?1.35S to ?1.45S at 300 nm, depending on base combination and degree of interaction (?1.35S for the oriented gas). It is emphasized that a common assumption of a single “effective” transition moment of the principal band at 260 nm may not generally be made because of the extensive overlap of differently polarized bands. The possibility of using the reduced dichroism curve for characterizing the secondary structure of DNA is discussed.  相似文献   

5.
The intermediate scattering function G(K,t) for any polymer model obeying a linear separable Langevin equation can be expressed in terms of the eigenvalues and eigenvectors of its normal coordinate transformation. An algorithm for the extract numerical evaluation of G(K,t) for linear Rouse-Zimm chains in the presence of hydrodynamic interaction has been developed. The computed G(K,t)2 were fit to C(t) = A exp(?tA) + B, and apparent diffusion coefficients calculated according to Dapp ≡ 1/(2τAK2). G(K,t)2 was surprisingly well-fit by single-exponential decays, especially at both small and large values of Kb, where K is the scattering vector and b the root-mean-squared subunit extension. Plots of Dapp vs K2 in-variably showed a sigmoidal rise from D0 at K2 = O up to a constant plateau value at large K2b2. Analytical expression for G(K,t), exact in the limit of short times, were obtained for circular Rouse-Zimm chains with and without hydrodynamic interaction, and also for free-draining linear chains, and in addition for the independent-segment-mean-force (ISMF) model. The predicted behaviors for G(K,t) at large Kb (or KRG) was found in all cases to be single-exponential with 1/τ ∝ K2 at large Kb, in agreement with the computational results. A simple procedure for estamating all parameter of the Rouse-Zimm model from a plot of Dapp vs K2 is proposed. Experimental data for both native and pH-denatured calf-thymus DNA in 1.0M Nacl with and without EDTA clearly plateau behavior of Dapp at large values of K, in harmony with the present Rouse-Zimm and ISMF theories, and in sharp contrast to previous predictions based on the Rouse-Zimm model.  相似文献   

6.
Most green algal taxa have circular‐mapping mitochondrial genomes, whereas some have linear genome‐ or subgenomic‐sized mitochondrial DNAs (mtDNA). It is not clear, however, if the circular‐mapping genomes represent genome‐sized circular molecules, if such circular molecules and the linear forms are the predominant in vivo mtDNA structures, or if the linear forms arose only once or multiple times among extant green algal lineages. We therefore examined the DNA components detected with homologous mtDNA probes after pulsed‐field gel electrophoresis of total cellular DNA from the chlorophycean basal bodies displaced clockwise(CW)‐group taxa Chlamydomonas reinhardtii and Chlamydomonas moewusii. For C. reinhardtii, the 15.8‐kb linear mtDNA was the only DNA component detected, and there was no evidence of circular or large linear precursors of this DNA. In the case of C. moewusii, which is known to have a circular‐mapping 22.9‐kb mitochondrial genome, three DNA components were detected; these appeared to be circular (relaxed and supercoiled) and genome‐sized linear DNA molecules, the latter of which likely resulted from random double‐strand breaks in the circular forms during DNA isolation. In further studies, DNA from additional CW‐group taxa was examined using conventional gel electrophoresis and DNA‐filter blot analysis with C. reinhardtii and C. moewusii mtDNA probes. We conclude that all taxa from the “Volvox clade” (sensu Nakayama et al. 1996 of the CW‐group have genome‐ or subgenomic‐sized linear mtDNAs as their predominant mtDNA form and that these arose from a genome‐sized circular form in an ancestor that existed near the base of this clade.  相似文献   

7.
Herein, we investigated new phthalimide‐based Schiff base molecules as promising DNA‐binding and free radical scavenging agents. Physicochemical properties of these molecules were demonstrated on the basis of elemental analysis, ultraviolet–visible (UV–Vis), infra‐red (IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. All spectral data are agreed well with the proposed Schiff base framework. The DNA‐binding potential of synthesized compounds were investigated by means of UV–visible, fluorescence, iodide quenching, circular dichroism, viscosity and thermal denaturation studies. The intrinsic binding constants (K b) were calculated from absorption studies were found to be 1.1 × 104 and 1.0 × 104 M?1 for compounds 2a and 2b suggesting that compound 2a binding abilities with DNA were stronger than the compound 2b. Our studies showed that the presented compounds interact with DNA through groove binding. Molecular docking studies were carried out to predict the binding between Ct‐DNA and test compounds. Interestingly, in silico predictions were corroborated with in vitro DNA‐binding conclusions. Furthermore, the title compounds displayed remarkable antioxidant activity compared with reference standard.  相似文献   

8.
A novel series of trisubstituted acridines were synthesized with the aim of mimicking the effects of BRACO19. These compounds were synthesized by modifying the molecular structure of BRACO19 at positions 3 and 6 with heteroacyclic moieties. All of the derivatives presented in the study exhibited stabilizing effects on the human telomeric DNA quadruplex. UV–vis spectroscopy, circular dichroism, linear dichroism and viscosimetry were used in order to study the nature of the DNA binding in more detail. The results show that all of the novel derivatives were able to fold the single-stranded DNA sequences into antiparallel G-quadruplex structures, with derivative 15 exhibiting the highest stabilizing capability. Cell cycle analysis revealed that a primary trend of the “braco”-like derivatives was to arrest the cells in the S- and G2M-phases of the cell cycle within the first 72 h, with derivative 13 and BRACO19 proving particularly effective in suppressing cell proliferation. All studies derivatives were less toxic to human fibroblast cell line in comparison with HT 29 cancer cell line.  相似文献   

9.
Sharon S. Yu  Hsueh Jei Li 《Biopolymers》1973,12(12):2777-2788
Protamine–DNA complexes prepared by the method of direct and slow mixing in 2.5 × 10?4M EDTA, pH 8.0, have been studied by thermal denaturation and circular dichroism. The complexes show biphasic melting with Tm at about 50 °C corresponding to the melting of free DNA regions and Tm′ at about 92 °C corresponding to the melting of protamine-bound regions. In protamine-bound regions there are 1.38 amino acid residues per nucleotide, indicating a nearly completely charge neutralization. Tm is increased but Tm′ is not when the ionic strength of the buffer is raised. This also supports a full charge neutralization in protamine-bound regions. The circular dichroism of the complexes can be decomposed into two components, Δε0 of free DNA regions in B-form conformation and Δεb of protamine-bound regions in a characteristic conformation neither that of B- nor C-form but somewhere between them.  相似文献   

10.
This study is a continuation of a series of papers dealing with topotecan interaction with double-stranded polydeoxyribonucleotides. We showed earlier that topotecan molecules form dimers in solution at concentration above 10–5(per base pair). Topotecan interaction with calf thymus DNA in solutions of low ionic strength was studied by fluorescence, circular dichroism, and linear flow dichroism. The data obtained indicate that topotecan forms two types of complex with DNA, DNA molecules combining with each other during formation of one of these complexes. The association constant of two topotecan-filled DNA molecules with each other was estimated at 104M–1(per base pair) in 1 mM sodium cacodylate buffer, pH 6.8, at 20°C. A possibility of modulation of DNA topoisomerase I activity by topotecan due to complexation with several sites of a supercoiled DNA molecule is discussed.  相似文献   

11.
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove‐binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA “shape readout” properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT‐rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT‐rich DNA duplex d[5′‐G2A6T6C2‐3′]. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two‐binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy‐driven with a binding constant of approximately 108 M?1. ITC‐derived binding enthalpies were used to obtain the binding‐induced change in heat capacity (ΔCp) of ?225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT‐tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT‐rich DNA (d[5′‐G2A6T6C2‐3′]) >B form alternate AT‐rich DNA (d[5′‐G2(AT)6C2‐3′]) > A form GC‐rich DNA (d[5′‐A2G6C6T2‐3′]), demonstrating the preference of ligand 1 for B* form DNA. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 720–732, 2014.  相似文献   

12.
H J Li  B Brand  A Rotter  C Chang  M Weiskopf 《Biopolymers》1974,13(8):1681-1697
Thermal denaturation of direct-mixed and reconstituted polylysine–DNA complexes in 2.5 × 10?4 M EDTA, pH 8.0 and various concentrations of NaCl has been studied. For both complexes, increasing ionic strength of the solution raises Tm, the melting temperature of free base pairs. The linear dependence of Tm on log Na+ indicates that the concept of electrostatic shielding on phosphate lattice of an infinitely long pure DNA by Na+ can be applied to short free DNA segments in a nucleoprotein. For a direct-mixed polylysine–DNA complex, the melting temperature of bound base pairs Tm′ remains constant at various ionic strengths. On the other hand, the Tm′ in a reconstituted polylysine–DNA complex is shifted to lower temperature at higher ionic strength. This phenomenon occurs for reconstituted complex with long polylysine of one thousand residues or short polylysine of one hundred residues. It is shown that such a decrease of Tm′ is not due to a reduction of coupling melting between free and bound regions in a complex when the ionic strength is raised. It is also not due to intermolecular or intramolecular change from a reconstituted to a direct-mixed complex. It is suggested that this phenomenon is due to structural change on polylysine-bound regions by ionic strength. It is suggested further that Na+ may replace water molecules and bind polylysine-bound regions in a reconstituted complex. Such a dehydration effect destabilizes these regions and lowers Tm′. This explanation is supported by circular dichroism (CD) results.  相似文献   

13.
Interactions of Isatin and its derivatives, Isatin-3-isonicotinylhydrazone (IINH) and Isatin-β-thiosemicarbazone (IBT), with calf thymus DNA (ctDNA) have been investigated to delineate pharmaceutical-physicochemical properties using UV–Vis/fluorescence/circular dichroism (CD) spectroscopy, viscosity measurements, and multivariate chemometrics. IINH and IBT molecules intercalate between base pairs of DNA, hypochromism in UV absorptions, increase in the CD positive band, sharp increase in specific viscosity, and the displacement of the methylene blue and Neutral Red dye in complexes with ctDNA, by the IINH and IBT molecules, respectively. The observed intrinsic binding constants (Kb[IBT–ctDNA]?=?1.03 × 105 and Kb[IINH–ctDNA]?=?1.09 × 105 L mol?1) were roughly comparable to other intercalators. In contrast, Isatin binds with ctDNA via groove mode (Kb[Isatin–ctDNA]?=?7.32 × 104 L mol?1) without any significant enhancement in ctDNA viscosity. The fluorescence quenching of Isatin by ctDNA was observed as static. CD spectra indicated that Isatin effectively absorbs into grooves of ctDNA, leading to transition from B to C form. Thermodynamic parameters like enthalpy changes (?H < 0) and entropy changes (?S > 0) were calculated according to Van’t Hoff’s equation, indicating the spontaneous interactions. The common soft/hard chemometric methods were used not only to resolve pure concentration and spectral profiles of components using the acquired spectra but also to calculate Stern–Volmer quenching constants, binding stoichiometry, apparent binding constants (Ka), binding constants (Kb), and thermodynamic parameters. The Kb values for Isatin, IINH, and IBT were calculated as 9.18 × 103, 1.53 × 105, and 2.45 × 104 L mol?1, respectively. The results obtained from experimental-spectroscopic analyses showed acceptable agreement with chemometric outlines.  相似文献   

14.
Abstract

The condensation of chicken erythrocyte (CE) and calf thymus (CT) chromatins upon addition of di- and multivalent cations has been studied using turbidityJulprecipitation and electric dichroism measurements. For all the cations investigated (Mg2+, Tb3+, Co(NH3)6 3+, spermidine Spd2+ and spermine Sp4+) condensation of CE chromatin occurred before the onset of aggregation, while aggregation of CT chromatin started before condensation with all cations except Mg2+ and Tb3+. Precipitation of CE chromatin required lower di- and multivalent cations concentrations than CT chromatin. The electric dichroism data for both chromatins, at low ionic strength in the absence of di- or multivalent cations, indicated that the nucleoprotein molecules were not totally decondensed but that a “precondensed” state was already present. A positive electric dichroism was observed for the most condensed chromatin fibers, in agreement with the “cross-linker” models. Tb3+ led to less compact condensed particles as judged from the electric dichroism observations, but electron microscopy revealed that “30 nm fibers” were formed. Very little aggregation was produced by Tb3+. On the contrary, spermine produced very large networks of condensed molecules, but large spheroidal particles were also observed. The condensation of CE chromatin happened without changes of solution conductivity upon cation salt addition, regardless of the condensing cation, indicating a cooperative uptake of the ions during this process.  相似文献   

15.
Quasielastic light scattering methods were used to study calf thymus DNA in solutions of LiCl, NaCl, NH4Ac, and NH4Cl. Plots of the reciprocal relaxation time (1/τ) vs sin2(θ/2), where θ is the scattering angle, exhibit two linear regions, in accordance with theories for semiflexible polymers based on the t → 0 approximation. In these theories the slope of the linear region at low angles is associated with the translational diffusion coefficient (Dt), whereas the slope of the linear region at high angles is associated with the segmental diffusion coefficient (Ds = kT/?s). The midpoint of the “transition” between these two linear regions is associated with the mean displacement between segments (b). Data presented here indicate that the Rouse-Zimm parameters b and ?s are significantly different for DNA in 0.4M NH4Cl relative to the other salts at comparable ionic strengths. It is suggested that this difference reflects local solvent structure and that both b and Ds are sensitive to the local water structure.  相似文献   

16.
The linear dichroism (LD) has been measured for DNA molecules 239–164,000 base pairs long oriented in shear flow over a large range of velocity gradients (30–3,000 s ?1) and ionic strengths (2–250 mM). At very low gradients, the degree of DNA orientation increases quadratically with the applied shear as predicted by the Zimm theory [J. Zimm, (1956) Chemical Physics, Vol. 24, p. 269]. At higher gradients, the orientation of fragments ≥ 7 kilobase pairs (kbp) increases linearly with increasing shear, whereas the orientation of fragments ≥ 15 kbp shows a more complicated dependence. In general, the orientation decreases with increasing ionic strength throughout the studied ionic strength interval, owing to a decrease in the persistence length of the DNA. The effect is most dramatic at ionic strengths below 10 mM, and is more pronounced for longer DNA fragments. For fragments ≥ 15 kbp and velocity gradients ≥ 100 s?1, the orientation can be adequately described by the empirical relation: LDr= –(k1-G)/(k2 + G), where k1is a linear function of the square root of the ionic strength and k2 depends on the DNA contour length. Since the DNA persistence length can be represented as a linear function of the reciprocal square root of the ionic strength [D. Porschke, (1991) Biophysical Chemistry, Vol. 40, p. 169], extrapolation of the empirical relation provides information about the stiffness of the DNA fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
D.A. Lightner  F.P.C. Eng 《Steroids》1980,35(2):189-207
2α- and 2β-Methyl- and methoxy-5α-cholestan-3-ones and 3α- and 3β-methyl- and methoxy-5α-cholestan-2-ones have been synthesized and their variable temperature circular dichroism spectra obtained and analyzed. Rotatory strength (R) values for α-axial and equatorial CH3 and OCH3 groups are determined by difference measurements with the parent ketone. The (small) equatorial CH3 R-values do not consistently follow the Octant Rule. Axial OCH3 groups do not obey the Octant Rule (“anti-octant” behavior) and impose a bathochromic shift on the C = 0 n-π1 transition. Equatorial OCH3 groups do not consistently follow octant or “anti-octant” behavior.  相似文献   

18.
The interaction between the dimer structure of ibuprofen drug (D-IB) and calf thymus DNA under simulative physiological conditions was investigated with the use of Hoechst 33258 and methylene blue dye as spectral probes by the methods of UV-visible absorption, fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling study.Using the Job's plot, a single class of binding sites for theD-IB on DNA was put in evidence. The Stern–Volmer analysis of fluorescence quenching data shows the presence of both the static and dynamic quenching mechanisms. The binding constants, Kb were calculated at different temperatures, and the thermodynamic parameters ?G°, ?H° and ?S° were given. The experimental results showed that D-IB molecules could bind with DNA via groove binding mode as evidenced by: I. DNA binding constant from spectrophotometric studies of the interaction of D-IB with DNA is comparable to groove binding drugs. II. Competitive fluorimetric studies with Hoechst 33258 have shown that D-IB exhibits the ability of this complex to displace with DNA-bounded Hoechst, indicating that it binds to DNA in strong competition with Hoechst for the groove binding. III. There is no significantly change in the absorption of the MB-DNA system upon adding the D-IB, indicates that MB molecules are not released from the DNA helix after addition of the D-IB and are indicative of a non-intercalative mode of binding. IV. Small changes in DNA viscosity in the presence of D-IB, indicating weak link to DNA, which is consistent with DNA groove binding. As well as, induced CD spectral changes, and the docking results revealed that groove mechanism is followed by D-IB to bind with DNA.  相似文献   

19.
20.
The transfecting efficiency of P22 DNA on “rough” strains of Salmonella typhimurium or non-restricting mutants of Escherichia coli K12 approaches 3 × 10?8 plaques/genome equivalent. It increases 20-fold upon complete erosion of the terminally redundant regions of the DNA molecule with either λ exonuclease or exonuclease III. Eroded DNA molecules form circles and linear oligomers upon annealing. The circular monomers display transfecting activity about ten times higher than that of eroded linear monomers or hydrogen-bonded oligomers. recB recC sbcB strains of E. coli K12 are transfected with P22 DNA with an efficiency of 1.5 × 10?6 plaques/genome equivalent. The activity of DNA molecules on these strains is not augmented by erosion. This suggests that the activation by erosion, seen in assays on rec+ genotypes, is due to the formation of hydrogen-bonded circular molecules, which more readily escape degradation by the recBC nuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号