首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):296-305
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[(3)H(3)C]methionine, l-[(14)CH(3)]methionine, or [1,2-(14)C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

2.
N-Arylated chitosans were synthesized via Schiff bases formed by the reaction between the primary amino group of chitosan with aromatic aldehydes followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Treatment of chitosan containing N,N-dimethylaminobenzyl and N-pyridylmethyl substituents with iodomethane under basic conditions led to quaternized N-(4-N,N-dimethylaminobenzyl) chitosan and quaternized N-(4-pyridylmethyl) chitosan. Methylation occurred at either N,N-dimethylaminobenzyl and N-pyridylmethyl groups before the residual primary amino groups of chitosan GlcN units were substituted. The total degree of quaternization of each chitosan varied depending on the extent of N-substitution (ES) and the sodium hydroxide concentration used in methylation. Increasing ES increased the total degree of quaternization but reduced attack at the GlcN units. N,N-dimethylation and N-methylation at the primary amino group of chitosan decreased at higher ES’s. Higher total degrees of quaternization and degrees of O-methylation resulted when higher concentrations of sodium hydroxide were used. The molecular weight of chitosan before and after methylation was determined by gel permeation chromatography under mild acidic condition. The methylation of the N,N-dimethylaminobenzyl derivative with iodomethane was accompanied by numerous backbone cleavages and a concomitant reduction in the molecular weight of the methylated product was observed. The antibacterial activity of water-soluble methylated chitosan derivatives was determined using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria; minimum inhibitory concentrations (MIC) of these derivatives ranged from 32 to 128 μg/mL. The presence of the N,N-dimethylaminobenzyl and N-pyridylmethyl substituents on chitosan backbone after methylation did not enhance the antibacterial activity against S. aureus. However, N-(4-N,N-dimethylaminobenzyl) chitosan with degree of quaternization at the aromatic substituent and the primary amino group of chitosan of 17% and 16–30%, respectively, exhibited a slightly increased antibacterial activity against E. coli.  相似文献   

3.
The administration of ethanolamine to adult male mice resulted in a significant increase in ethanolamine kinase activity in liver and kidney. Similarly, choline administration resulted in a significant increase in choline kinase activity in liver and kidney. The administration of ethanolamine resulted in enhancement of choline kinase activity concomitantly with ethanolamine kinase activity in liver and kidney. The administration of choline, however, did not result in any significant increase in ethanolamine kinase activity in liver or kidney. Cycloheximide administration along with choline-ethanolamine prevented the increase in kinase activity in liver and kidney. The results obtained have been discussed in relation to the regulatory role of choline kinase and ethanolamine kinase by de novo synthesis in response to enhanced substrate concentration, the secondary nature of choline kinase induction on ethanolamine administration, and possible distinction between choline kinase and ethanolamine kinase.  相似文献   

4.
Choline and ethanolamine plasmalogens containing defined acyl chains are prepared by deacylation and reacylation of beef heart plasmalogens. During the reactions, the amino group of ethanolamine plasmalogens is protected by the trityl group. Deacylation is achieved by mild alkaline hydrolysis, and the lysoplasmalogens are reacylated with oleoylimidazolide in the presence of the methylsulfinylmethide anion. The protective group is removed from N-trityl ethanolamine plasmalogen by treatment with silicic acid in hexane. The choline and ethanolamine plasmalogens prepared by the procedures described are free of geometric, positional and steric isomers.  相似文献   

5.
6.
7.
1. Ehrlich ascites-cell extracts convert choline and ethanolamine approximately equally well into their respective phosphoryl derivatives. 2. Choline is a potent inhibitor of ethanolamine phosphorylation, but ethanolamine has little effect on choline phosphorylation. 3. 2,3-Dimercaptopropanol, cysteine and Ca(2+) inhibit ethanolamine phosphorylation, but have no detectable effect on choline phosphorylation. 4. Choline-phosphorylating activity in Ehrlich ascites-cell extracts is more stable during storage than ethanolamine-phosphorylating activity. 5. Choline phosphorylation is stimulated in the presence of benzoylcholine, succinylcholine, butyrylcholine and propionylcholine, whereas ethanolamine phosphorylation is inhibited. This relationship is reciprocal: the compounds causing the greatest stimulation of choline phosphorylation bring about the greatest inhibition of ethanolamine phosphorylation.  相似文献   

8.
To facilitate evaluation of the influence of myocardial phospholipid metabolites on the development of electrophysiologic abnormalities induced by ischemia, a method for the quantification of choline and ethanolamine phospholipids suitable for accurate and reproducible analysis of small amounts of myocardium was developed. The procedure combines chloroform and methanol extraction of phospholipids after tissue homogenization with subsequent separation by sequential thin-layer and high-performance liquid chromatography. Phosphorus in purified lipid classes was determined with the correction for recovery based on 14C-labeled internal standards.  相似文献   

9.
10.
Spectrophotometric assays of esterases are sensitive, rapid, and quite specific when thioester substrates are used. Glycerophospholipids with thiophosphoester bonds may be useful as substrates for phospholipase C (EC 3.1.4.3). These have been made from mercaptoglycerol and mercaptoethanol. The thiols were oxidized to disulfides, acylated, and reduced with dithiothreitol. Phosphocholine derivatives were made by the classical methods for oxyphosphoesters. The phosphatidyl choline analogue was converted to the phosphatidyl ethanolamine analogue by transphosphatidylation with cabbage phospholipase D and ethanolamine. Structures were proved with enzymic hydrolysis, infrared spectra, TLC behavior, and elemental analyses. The synthesized compounds were rac-1-S-phosphocholine-2,3-O-didecanoyl-1-mercapto-2,3-propanediol, 1-S-phosphoethanolamine-2,3-O-didecanoyl-1-mercapto-2,3-propanediol, and 1-S-phosphocholine-2-O-hexadecanoyl-1-mercapto-2-ethanol.  相似文献   

11.
Datko AH  Mudd SH 《Plant physiology》1988,88(3):854-861
The methylation steps in the biosynthesis of phosphatidylcholine by tissue culture preparations of carrot (Daucus carota L.) and soybean (Glycine max), and by soybean leaf discs, have been studied. Preparations were incubated with tracer concentrations of l-[3H3C]methionine and the kinetics of appearance of radioactivity in phosphomethylethanolamine, phosphodimethylethanolamine, phosphocholine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, methylethanolamine, dimethylethanolamine, and choline followed at short incubation times. With soybean (tissue culture or leaves), an initial methylation utilizes phosphoethanolamine as substrate, forming phosphomethylethanolamine. The latter is converted to phosphatidylmethylethanolamine, which is successively methylated to phosphatidyldimethyethanolamine and to phosphatidylcholine. With carrot, again, an initial methylation is of phosphoethanolamine. Subsequent methylations occur at both the phospho-base and phosphatidyl-base levels. Both of these patterns differ qualitatively from that previously demonstrated in Lemna (SH Mudd, AH Datko 1986 Plant Physiol 82: 126-135) in which all three methylations occur at the phospho-base level. For soybean and carrot, some added contribution from initial methylation of phosphatidylethanolamine has not been excluded. These results, together with those from similar experiments carried out with water-stressed barley leaves (WD Hitz, D Rhodes, AD Hanson 1981 Plant Physiol 68: 814-822) and salinized sugarbeet leaves (AD Hanson, D Rhodes 1983 Plant Physiol 71: 692-700) suggest that in higher plants some, perhaps all, phosphatidylcholine synthesis occurs via a common committing step (conversion of phosphoethanolamine to phosphomethylethanolamine) followed by a methylation pattern which differs from plant to plant.  相似文献   

12.
13.
The regulation of the asymmetric distribution of aminophospholipids in mammalian cell plasma membranes is not understood at this time. One approach to determine the nature of such regulatory mechanisms is to attempt alteration of the plasma membrane phospholipid composition. Choline analogues such as N,N'-dimethylethanolamine and N-monomethylethanolamine lowered the quantity of phosphatidylethanolamine in the plasma membrane of LM fibroblasts grown in defined medium without serum. Ethanolamine supplementation increased the phosphatidylethanolamine content while ethanolamine analogues such as 2-amino-2-methyl-1-propanol, 2-amino-1-butanol, 1-aminopropanol, and 3-aminopropanol did not alter the aminophospholipid content significantly. The transverse distribution of aminophospholipids in the plasma membrane was determined by use of a chemical labelling reagent trinitrobenzenesulfonic acid. The percent phosphatidylethanolamine trinitrophenylated by trinitrobenzenesulfonate in the outer plasma membrane monolayer of LM cells supplemented with choline analogues was not altered. In contrast, ethanolamine analogue supplementation increased the percentage of aminophospholipid in the outer monolayer 2--3-fold. Ethanolamine analogue-containing phospholipids were distributed asymmetrically across the plasma membrane with 85 to 91% being located in the inner monolayer of the plasma membrane, a distribution similar to that of phosphatidylethanolamine. The fatty acyl composition of aminophospholipids in the outer monolayer was in all cases more saturated than in the corresponding phospholipids of the inner monolayer. However, choline analogues and especially the ethanolamine analogues reduced this difference. Thus, base analogues of choline and ethanolamine may alter the aminophospholipid asymmetry, the surface charge, and the acyl chain asymmetry of LM cell plasma membranes.  相似文献   

14.
15.
The yeasts Candida utilis and Hansenula polymorpha were able to grow in media containing choline or ethanolamine as the sole nitrogen source. During growth in the presence of these substrates, large peroxisomes developed in the cells, and extracts of choline-grown C. utilis cells contained increased levels of amine oxidase and catalase. Incubation of whole cells with choline in the presence of the amine oxidase inhibitor aminoacetonitrile led to excretion of dimethylamine and methylamine. Cytochemical experiments in which spheroplasts prepared from choline-grown cells were incubated with CeCl3 and choline, trimethylamine, dimethylamine or methylamine revealed positively stained peroxisomes, whereas in the presence of 1 mM aminoacetonitrile staining was not observed. This indicated that choline was degraded via methylated amines and that peroxisomes played a role in its metabolism. A similar involvement of peroxisomes in choline degradation was observed in H. polymorpha. Cell-free extracts of ethanolamine-grown C. utilis and H. polymorpha also contained increased levels of amine oxidase and catalase. Ethanolamine was oxidized by cell-free extracts of both organisms after growth in the presence of ethanolamine or choline. Incubation of spheroplasts of ethanolamine-or choline-grown C. utilis with CeCl3 and ethanolamine resulted in positively stained peroxisomes. In this organism peroxisomes were therefore also involved in ethanolamine degradation.K. B. Zwart was supported by the Foundation for Fundamental Biological Research (BION) which is subsidized by the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

16.
17.
1. Incorporation of [Me-14C]choline and [2-14C]ethanolamine into lipids was studied in germinating soya bean (Glycine max L.) seeds. The precursors are only incorporated into phosphatidylcholine and into phosphatidylethanolamine respectively. 2. Base-labelling via a phospholipase-D type of reaction was eliminated as a significant factor. 3. Cyclo heximide inhibited labelling of phosphatidylcholine from [Me-14C]choline but did not affect labelling of the aqueous choline pool. It had no effect on [2-14C]ethanolamine uptake or incorporation into phosphatidylethanolamine. 4. Hemicholinium-15 at 10mM concentrations decreased uptake and lipid labelling from the both bases. 5. There was no evidence for base competition. 6. The endogenous pool of choline was much larger than that of ethanolamine, which resulted in higher specific radioactivities for phosphatidyl-ethanolamine than for phosphatidylcholine. 7. The results can be interpreted as indicating that the kinase and phosphoryltransferase enzymes of the CDP-base pathways are separate for each phospholipid.  相似文献   

18.
19.
The hydrated 1:1 complex of meclofenamic acid with choline crystallizes in the orthorhombic space group Pna2(1) with a = 9.637(1), b = 12.962(5), c = 33.099(4) A and Z = 8. Crystals of the corresponding anhydrous complex with ethanolamine are triclinic, space group P1, with a = 9.232(3), b = 12.287(5), c = 17.033(3) A, alpha = 70.21(2), beta = 76.72(2), gamma = 68.21(3) degrees and Z = 4. The structures have been solved by direct methods and refined to R values of 0.062 and 0.079, respectively for 1942 and 2852 observed reflections. The four crystallographically independent meclofenamate anions in the complexes have nearly the same molecular geometry which in turn is very similar to that found in the crystal structure of free meclofenamic acid. The choline and ethanolamine molecules assume a gauche conformation with respect to the central C-C bond. The invariant structural features observed in the crystals of the free fenamates are retained by the meclofenamate ions in the complexes. These features are the rigid coplanar geometry of the six-membered ring carrying the carboxyl group, the carboxyl group and the imino nitrogen atom, and the internal hydrogen bond connecting the imino and the carboxyl groups. The crystal structures are stabilised by ionic interactions between the carboxylate groups of meclofenamate ions and choline or ethanolamine cations, and hydrogen bonds. The choline complex exhibits pseudosymmetry and the distribution of molecules in it is nearly centrosymmetric although the space group is noncentrosymmetric. The packing of molecules in the crystals is such that the polar columns are surrounded by non-polar regions. The core of each column in the choline complex is made up of water molecules connected by hydrogen bonds involving disordered protons. The results of the X-ray structure analysis of fenamates and their crystalline complexes provide some insights into structure-function relationships in this family of drugs.  相似文献   

20.
Choline kinase, the first enzyme in the CDP-choline pathway for phosphatidylcholine biosynthesis, was purified 26,000-fold from rat liver to a specific activity of 143,000 nmol.min-1.mg-1 protein. The subunit molecular mass was 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the apparent native molecular mass was 160 kDa by size exclusion chromatography, suggesting a tetrameric structure. Two peaks of choline kinase activity were obtained by chromatofocusing. These isoforms eluted at pH 4.7 (CKI) and 4.5 (CKII). CKII appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Peptide mapping of two isoforms indicated a high degree of similarity, although there were peptides not common to both. Ethanolamine kinase activity copurified with both isoforms. The ratio of choline to ethanolamine kinase activity was 3.7 +/- 0.7 throughout the purification procedure. Choline and ethanolamine were mutually competitive inhibitors. The respective Km values, 0.013 and 1.2 mM, were similar to the Ki values of 0.014 and 2.2 mM. An antibody raised against CKII immunoprecipitated both choline and ethanolamine kinase activities from liver cytosol at the same titer. These data suggest that both activities reside on the same protein and occur at the same active site. Similarly, both activities were immunoprecipitated from brain, lung, and kidney cytosols. Western blot analysis showed both purified liver isoforms, as well as brain, lung and kidney enzymes, to have a molecular mass of 47 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号