首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A repeated batch process was performed to culture Bifidobacterium longum CCRC 14634. An on-line device, oxidation-reduction potential (ORP), was used to monitor cell growth and uptake of nutrients in the culture. The ORP of the culture medium decreased substantially during fermentation until nutrients were depleted. Six cycles of batch fermentation using ORP as a control parameter were successfully carried out. As soon as ORP remained constant or increased, three-quarters of the broth was removed, and the same volume of fresh medium was fed to the fermenter for a new cycle of cultivation. Average cell concentrations of 1.9×109 and 3.4×109 cfu ml–1 for repeated batch fermentation in MRS (Lactobacilli MRS broth) and WY (containing whey hydrolyzates, yeast extract, l-cysteine) medium, respectively, were achieved. Cell mass productivities for batch, fed-batch and repeated batch fermentation using MRS medium were 0.51, 0.41, and 0.64 g l–1 h–1, respectively, and those for batch and repeated batch using WY medium were 0.76, 0.99 g l–1 h–1, respectively. The results indicate a possible industrial process to culture Bifidobacteria sp.  相似文献   

2.
Lv W  Cong W  Cai Z 《Biotechnology letters》2004,26(22):1713-1716
Nisin production by Lactococcus lactis subsp. lactisin fed-batch culture was doubled by using a pH feed-back controlled method. Sucrose concentration was controlled at 10 g l–1 giving 5010 IU nisin ml–1 compared to 2660 IU nisin ml–1 in batch culture.  相似文献   

3.
A study was made of environmental factors affecting the growth of Rhizoclonium riparium in order to evaluate its suitability for large-scale culturing. The results indicate that under the natural conditions prevailing at Taishi, Taiwan, this species can grow year-round, with a monthly biomass production (oven-dried) of 945–1540 kg ha−1 pond surface (assuming a pond depth of 1 m). The specific growth rate ranged from –2.1 to 10.4% per day. Salinity and temperature, both influenced the rate significantly, with optimal values at 20% and 25 °C, respectively. Short (2-mm) lengths of filaments had a higher specific growth rate than longer (20 mm) filaments. Under rotational culturing conditions, the specific growth rate was reduced when flow was increased.  相似文献   

4.
Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH 4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40–50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5–40 times higher than those of other bacteria with the same ability.  相似文献   

5.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

6.
The cyanobacterium Spirulina platensis was used to verify the possibility of employing microalgal biomass to reduce the contents of nitrate and phosphate in wastewaters. Batch tests were carried out in 0.5 dm3 Erlenmeyer flasks under conditions of light limitation (40 mol quanta m–2 s–1) at a starting biomass level of 0.50 g/dm3 and varying temperature in the range 23–40°C. In this way, the best temperature for the growth of this microalga (30°C) was determined and the related thermodynamic parameters were estimated. All removed nitrate was used for biomass growth (biotic removal), whereas phosphate appeared to be removed mainly by chemical precipitation (abiotic removal). The best results in terms of specific and volumetric growth rates ( =0.044 day–1, Q x =33.2 mg dm–3 day–1) as well as volumetric rate and final yield of nitrogen removal ( =3.26 mg dm–3 day–1, =0.739) were obtained at 30°C, whereas phosphorus was more effectively removed at a lower temperature. In order to simulate full-scale studies, batch tests of nitrate and phosphate removal were also performed in 5.0 dm3 vessels (mini-ponds) at the optimum temperature (30°C) but increasing the photon fluence rate to 80 mol quanta m–2 s–1 and varying the initial biomass concentration from 0.25 to 0.86 g/dm3. These additional tests demonstrated that an increase in the inoculum level up to 0.75 g/dm3 enhanced both NO3 and PO4 3– removal, confirming a strict dependence of these processes on biomass activity. In addition, the larger surface area of the ponds and the higher light intensity improved removal yields and kinetics compared to the flasks, particularly concerning phosphorus removal ( =0.032–0.050 day–1, Q x =34.7–42.4 mg dm–3 day–1, =3.24–4.06 mg dm–3 day–1, =0.750–0.879, =0.312–0.623 mg dm–3 day–1, and =0.224–0.440).  相似文献   

7.
A 30-l hollow fibre reactor with continuous fermentation for cell recycling of Escherichia coli AS 1.183 was used to remove the inhibitory effects on cell growth and extend the fast growth phase to increase the yield of polynucleotide phosphorylase (PNPase) in E. coli cells. When the dilution rate was 1.5 h−1, the cell concentration of E. coli reached 235 g/l (wet wt, 70% moisture content), with PNPase activity above 90 u/g (wet wt). With the dilution rate is 1.0 h−1, the fermentor volumetric productivity of PNPase in a hollow fiber reactor can reach 974 (u/h * l) compared to 20 (u/h * l) in a conventional batch culture.  相似文献   

8.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

9.
To narrow the differences between the results obtained from radionuclides and heavy metal ecotoxicity investigations in the laboratory and in the abandoned uranium mines, a few standardised plant bioassay procedures were selected from the literature for testing with Lemna gibba L. The bioassay procedures were tested in situ and ex situ. The laboratory culturing was performed in batch and semicontinuous modes. The results revealed that most of the standardised plant bioassay procedures require modification for the L. gibba bioassay to predict the actual effects under field conditions. L. gibba performed relatively better in the field than laboratory batch cultures despite that the batch cultures had many-fold higher nutrient concentrations than in the field. For instance, the phosphorus concentration of the mine tailing water was 0.13 ± 0.09 μg l−1 in the field, while the literature range for phosphorus in the laboratory culture media is 13.6–40 mg l−1. L. gibba growth in the laboratory batch culture was influenced by speciation changes due to consumption of nutrients, CO2 and O2 phase exchanges, and excretion of organic substances by the test plants. Semicontinuous culture modes performed significantly better than batch cultivation even after 10× dilution of the nutrient solution. The growth behaviour revealed that L. gibba exhibited intrapopulation and probiotic interaction for best performance. Growth performance of L. gibba was influenced by the anions that balanced essential cations despite equal cation concentration in the culture media; e.g., the best growth was observed in culture media that had more SO42− than Cl. Water samples from the field had higher SO42− concentrations than Cl. The test vessel material, sterilisation and axenic culturing procedures also influenced the sensitivity of the bioassay. These, for instance, and a few others are neither described nor reported in most standard Lemna tests or the literature. Thus, this work presents results of a series of tests conducted on the selected methods. Common and possible errors and corrective measures in assigning L. gibba bioassay from laboratory population levels to field community levels are discussed.  相似文献   

10.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   

11.
Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250–2,000 mg l−1. The corresponding phenol degradation rate reached 993.6 mg phenol g−1 volatile suspended solids (VSS) day−1 at 250 mg l−1 phenol and 519.3 mg phenol g−1 VSS day−1 at 2,000 mg l−1 phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol >1,500 mg l−1. Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200–250 μm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.  相似文献   

12.
Two bioreactor continuous cultures, at anaerobic and aerobic conditions, were carried out using a recombinant Saccharomyces cerevisiae strain that over-expresses the homologous gene EXG1. This recombinant system was used to study the effect of dissolved oxygen concentration on plasmid stability and gene over-expression. Bioreactor cultures were operated at two dilution rates (0.14 and 0.03 h–1) to investigate the effect of other process parameters on EXG1 expression. Both cultures suffered severe plasmid instability during the first 16 generations. Segregational plasmid loss rate for the aerobic culture was two-fold that of the anaerobic operation. In spite of this fact, exo--glucanase activity at aerobic conditions was 12-fold that of the anaerobic culture. This maximal activity (30 U ml–1) was attained at the lowest dilution rate when biomass reached its greatest value and glucose concentration was zero.  相似文献   

13.
Immobilization of Chlamydomonas reinhardtii in alginate increases its photorespiration rate. In the immobilized cells, the photorespiratory enzyme, phosphoglycolate phosphatase, was 75% higher than in freely suspended cells. Thus, the immobilized cells produced glycolate at twice the rate than in freely suspended cells when treated with aminooxyacetate (a transaminase inhibitor). With immobilized cells in a batch reactor, 270mol glycolatemg–1 Chl was produced after 12h.Revisions requested 27 October 2004; Revisions received 13 December 2004  相似文献   

14.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

15.
Shim H  Hwang B  Lee SS  Kong SH 《Biodegradation》2005,16(4):319-327
Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500mgl–1 of benzene, 600mgl–1 of o-xylene, and 1000mgl–1 of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.  相似文献   

16.
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75–90% of the initial TOC (total organic carbon) was mineralized, 5–20% remained as DOC (dissolved organic carbon) and 3–10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0–19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with eitherArthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.  相似文献   

17.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

18.
Although Aeromonas caviae is pathogenic to a broad range of invertebrates including human, frequent in aquatic environments, and potentially vital for acidogenesis in anaerobic digestion, virtually no biokinetic information on its anaerobic growth is at hand. Therefore, this study focused on evaluating its anaerobic growth kinetics on glucose. To provide a set of relevant biokinetic coefficients for modeling, a combination of curve fitting and numerical modeling was used. Microcultivations were performed at eight different initial glucose concentrations of 0.1 to 2.5 g l−1 to establish a function of specific growth rate versus substrate concentration. A batch anaerobic bioreactor was then operated to collect a data set for the numerical analysis. Kinetic coefficients were estimated from three different biomass growth profiles monitored by optical density, volatile suspended solids (VSS), or DNA measurement, and applied for simulating continuous operations at various hydraulic retention times (HRTs). Assuming the influent glucose concentration is 5,000 mg l−1, the substrate utilization efficiency predicted to be 77.2% to 92.0% at 17 to 36 h HRTs. For the VSS-model-based simulation, the washout HRT was estimated to be 16.6 h, and similar for the other models. Overall, the anaerobic biokinetic coefficients of A. caviae grown on glucose were successfully estimated and found to follow a substrate inhibition model.  相似文献   

19.
The combined effect of temperature, food level and the presence of an invertebrate predator on the body size of the rotifer Brachionus havanaensis were tested in this study. B. havanaensis was cultured at 15, 20, and 25°C under three different Chlorella vulgaris levels (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1) in the presence and in the absence of Asplanchna girodi. For each treatment we maintained three replicates and constant (0.4 ind ml−1) population density of B. havanaensis. In treatments containing A. girodi, the predator was separated from the prey by a mesh (pore size 50 μm). On the last day of the experiment, a portion of the B. havanaensis population was sampled for several morphometric measurements (adult lorica length, width, posterior spine length, body volume, and the egg volume). Size measurements were done by drawing the specimens using a calibrated camera lucida. Statistically significant impact of temperature as well as the predator’s presence was observed on the lorica length, posterior spine, and egg volume of B. havanaensis. The interactions of food × temperature, or predator′s presence × food × temperature were non-significant (P > 0.05) for lorica length, spine length, body volume, and egg volume. Regardless of the type of treatment, there was a direct positive correlation between lorica length and width. Egg volume was linearly related to the adult size. Notably long posterior spines were observed in treatments containing the presence of A. girodi. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez. Advances in Rotifer Research  相似文献   

20.
To develop an effective fermentation system for producing Escherichia coliphytase AppA2, we expressed the enzyme in three inducible yeast systems: Saccharomyces cerevisiae (pYES2), Schizosaccharomyces pombe (pDS472a), and Pichia pastoris (pPICZ A), and one constitutive system: P. pastoris (pGAPZA). All four systems produced an extracellular functional AppA2 phytase with apparent molecular masses ranging from 51.5 to 56 kDa. During 8-day batch fermentation in shaking flasks, the inducible Pichia system produced the highest activity (272 units ml–1 medium), whereas the Schizo. pombesystem produced the lowest activity (2.8 units ml–1). The AppA2 phytase expressed in Schizo. pombehad 60–75% lower Kmfor sodium phytate and 28% higher heat-stability at 65 °C than that expressed in other three systems. However, all four recombinant AppA2 phytases had pH optimum at 3.5 and temperature optimum at 55 °C and similar efficacy in hydrolyzing phytate–phosphate from soybean meal.Revisions requested 18 November 2004; Revisions received 7 January 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号