首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A major component of the thymic microenvironment is a network of thymic epithelial cells (TEC) which are able to express class II major histocompatibility complex products and to secrete thymic hormones. In the present investigation, we used a panel of anti-cytokeratin (CK) antibodies to establish distinct cytokeratin-defined TEC subsets. Four subpopulations were identified. One, in the cortex, is defined by anti-CK8 and anti-CK18 monoclonal antibodies (MAb). The other three subsets are medullary, two minor ones respectively reactive with anti-CK19 and KL1 monoclonal antibodies (the latter being specific for CK3 and 10), and a major one characterized by negative reaction with the above-mentioned MAb but strongly positive after labeling with a polyclonal (and polyspecific) anti-keratin immunoserum. Ontogenetic studies revealed that the CK8+/18+ TEC subset is the first to be detected in fetal life. Moreover, the numbers of CK3/10+ cells and CK19+ cells decrease in aging normal mice, a phenomenon that seems to occur early in autoimmune mice. We also observed that these two medullary TEC subsets are sensitive to high-dose in vivo treatment with hydrocortisone, which stimulates a dramatic increase in CK3/10+ cells and a certain decrease in CK19+ cells. Our results indicate that a number of mouse TEC subsets can be distinguished by cytokeratin expression. Such a strategy can be applied to analyze TEC sensitivity to drugs and might also be useful to further understanding of differential TEC function regarding intrathymic T-cell differentiation.  相似文献   

2.
The embryonal origin of hepatic stellate cells (HSCs), the principal cells in hepatic fibrogenesis, is still intriguing. To explore the origin and the differentiation of HSCs, we studied the expression of cytokeratin 18 (CK18) and 19 (CK19), the standard markers of simple epithelial cells, in cultured human HSCs. Hepatic stellate cells were isolated from five normal human livers. In immunofluorescence staining, both clone C-51 anti-CK18 antibody and clone RCK108 anti-CK19 antibody labeled almost all stellate cells in the primary culture. Double immunofluorescence staining for cytokeratin/vimentin and cytokeratin/alpha-smooth muscle actin detected by confocal laser scanning microscopy clearly demonstrated the localization of cytokeratin immunoreactivity in human HSCs. During subsequent cultivation of human HSCs to the tenth passage, immunocytochemical staining and western blot analysis demonstrated gradually decreasing profiles of CK18 and CK19 expression. The progressive reduction of cytokeratin expression was further confirmed in a culture of clone cells originated from a single HSC. In conclusion, both CK18 and CK19 are expressed in cultured human HSCs, and the extent of their expression decreases gradually during prolonged cultivation. Our results suggest that HSCs may be of epithelial origin, and that they undergo the transdifferentiation from epithelial to mesenchymal phenotype during an activation process in vitro.  相似文献   

3.
Summary Immunohistochemistry with monoclonal and polyclonal antibodies revealed the presence of cytokeratins in epithelial cells of Rathke's cysts in the pars intermedia of the human pituitary gland. With monoclonal antibodies specific for individual cytokeratins, the expression of CK 18, CK 8, CK 7, and CK 19 could be shown in these cells. Within the hypophysis, CK 19 and CK 7 were restricted to Rathke's cysts and a few epithelial cell clusters in the pars tuberalis, whereas other cytokeratins were also present in endocrine cells of the pars distalis. Furthermore, vimentin and, focally, glial fibrillary acidic protein (GFAP) were detected in the cystic epithelia. By double labelling, coexpression of cytokeratin and vimentin, GFAP and cytokeratin, and GFAP and vimentin could be demonstrated. Compiled data of all known cases of coexpression of cytokeratin and vimentin in normal cells reveal physiological correlations and suggest a functional significance of this rare type of coexpression of intermediate filament proteins.  相似文献   

4.
Cytokeratin 8 (CK8) and cytokeratin 19 (CK19) is a specific cytoskeletal component of simple epithelia, including bronchial epithelial cells. We hypothesized that CK8 or CK19 released from epithelial cells may bind to and cause damage to extracellular matrixes through binding of anti-CK8 or anti-CK19 autoantibodies. In the present study, bindings of recombinant human CK8 and CK19 to laminin (both derived from mouse sarcoma cells and human), collagen, gelatin, and fibronectin were evaluated by a modified enzyme-linked immunosorbent assay (ELISA). In addition, binding of CK19 to laminin was also confirmed by inhibition assay. As a result, CK19 strongly bound to mouse laminin as well as human laminin. Pretreatment with laminin significantly reduced the binding of CK19 to laminin. However, binding of recombinant CK19 to laminin was not demonstrated by Western immunoblot, suggesting that SDS treatment of laminin diminished the binding. These results suggest that released CK19 from epithelial cells may have played a role in the damage of basement membrane by accumulation of an immune complex composed by CK19 and anti-CK19 autoantibody.  相似文献   

5.
The expression of cytokeratins (CKs) 8, 18 and 19 was analyzed in male and female rat gonads from the undifferentiated stage (12.5 days of gestation) until two weeks after birth by indirect immunofluorescence, using specific monoclonal antibodies anti-CK 8 (LE41), anti-CK 19 (LP2K) and anti-CK 18 (LE65 and RGE53). In the undifferentiated blastema, the somatic cells were stained for CK 8 and CK 19, whereas no detectable immunoreactivity for CK 18 was obtained. The same staining CK pattern was observed in ovaries, in the somatic cells of ovigerous cords and in primary follicles. The staining was progressively decreasing in growing follicles after one week after birth. At the onset of testicular differentiation, when the first Sertoli cells differentiate in the gonad of 13.5-day old male fetuses, positive staining for CK 18 became evident, in addition to CK 8 and CK 19 expression. In the following days, CK 8, CK 18 and CK 19 were detected in Sertoli cells in the differentiating seminiferous cords, but progressively the reactivity for CK 19 decreased and was no longer observed after 18.5-19.5 days of gestation. In all cases, CKs were found to be coexpressed with vimentin, and germ cells were negative for both vimentin and CKs. The results reported here show first, that CKs are expressed before sexual differentiation in gonadal blastema in which no epithelial organization is observed, and second, that there is a CK 18/CK 19 shift in expression during morphogenesis of the testis which is not observed in the differentiating ovary. Future studies will have to determine whether these differences in CK expression are due to epitope-masking phenomena or to the regulation of CK synthesis.  相似文献   

6.
Neuroendocrinology of the thymus   总被引:4,自引:0,他引:4  
The neuropeptides oxytocin (OT) and vasopressin (VP) are synthesized in the human thymus in a similar way as in the hypothalamo-neurophypophyseal system. Immunocytochemistry with polyclonal and monoclonal antibodies revealed that immunoreactive OT- and VP-producing cells are localized in the subcapsular cortex and medulla of human and murine thymuses. The epithelial nature of the neuroendocrine thymic cells is demonstrated by their immunostaining with a monoclonal antibody against cytokeratin. An original example of a neuroendocrine-immune microenvironment is given by the thymic nurse cells which are composed of a large neuroendocrine epithelial cell enclosing numerous mitotic immature thymocytes. These observations and the previously reported mitogenic and immunomodulatory properties of VP and OT upon mature T cells and thymocytes strongly support the existence of a neuroendocrine thymo-lymphoid axis and an active role of thymic VP and OT in T cell differentiation and activation.  相似文献   

7.
Twenty-six human thymomas were studied in an attempt to correlate their morphological appearance with the type and degree of T-lymphocyte maturation, as determined by acid alpha-naphthyl-acetate esterase (ANAE) activity and immunological analysis. Four normal human thymuses were used for purposes of comparison. Two morphological patterns were identified in the thymomas. The distinction was based largely on similarities between the neoplastic epithelial cells and normal cortical and medullary epithelial cells, and on the relative proportions of epithelial cells and lymphocytes. By these criteria "medullary" and "cortical" patterns were identified. In several thymomas both patterns were present in the same tumor ("mixed-type pattern"), producing alternating dark cortical-like areas and lighter foci of medullary differentiation. A good correlation was found between the two patterns and the phenotype of the T-associated lymphoid component. ANAE activity, which was completely lacking in normal cortical thymocytes, was almost absent in the phenotypically immature T-cells of cortical-type thymomas. By contrast, in the medullary-type thymomas, T-cells showed immunological features in common with medullary thymocytes. This was characterized by strong ANAE activity in the majority of cells with a staining pattern corresponding to that of peripheral T-lymphocytes. In addition, most of the proliferating epithelial cells in medullary-type thymomas stained strongly with anti-cytokeratin and anti-epidermal-type keratin antisera. In the mixed-type thymomas the epithelial cell morphology and the immunohistochemical and enzymic features of the T-cells were found to be closely related to the respective cortical--or medullary-like areas. It was concluded that the various characteristics of normal thymic cortex and medulla studied are also present in thymomas. In particular, in medullar-type thymomas the presence of many of the features of normal thymic medulla, such as a squamous cell component, macrophages and interdigitating reticulum cells, may constitute a microenvironment which operates actively in T-cell education. This may account for the functional activities, characteristic of peripheral T-lymphocytes, which T-lymphocytes attain in these thymomas.  相似文献   

8.
A monoclonal antibody specific for thymulin (FTS), a thymic hormone initially isolated from serum, was obtained by cell fusion using spleen cells from BALB/c mice immunized with cultured human thymic epithelial cells. Hybridomas were selected according to their capacity to produce antibodies binding specifically to thymic epithelial cells in culture (as assessed by indirect immunofluorescence) and their ability to absorb in vitro the biological activity of synthetic and natural hormone preparations and to induce in vivo the disappearance of endogenous circulating thymulin. In this way monoclonal antibodies were obtained that recognized a subpopulation of nonlymphoid cells on frozen sections of mouse and human thymuses. The epithelial nature of these cells was assessed using an antikeratin antiserum. The binding of the antibodies to thymic cells was completely abolished by its absorption with the synthetic hormone or normal (but not of thymectomized) mouse serum. The thymic specificity of the antibody was further confirmed by the complete absence of binding to sections of all the various lymphoid and epithelial organs examined (from both humans and mice). Double labeling experiments using the monoclonal antibody described above and a monoclonal antibody prepared by immunization with the synthetic peptide showed that the two antibodies bound to the same cell. These results provide further evidence for the exclusive presence of the thymic hormone thymulin in thymic epithelial cells.  相似文献   

9.
The mouse thymic epithelial network was studied using three different anti-keratin antibodies. One of these antibodies, KL1, exclusively recognized a small subset of medullary epithelial cells characterized by its content of a high molecular weight keratin (63 kD). Since epithelial differentiation is known to be associated with the acquisition of high molecular weight keratins, KL1-positive cells, which express the Ia antigen and secrete thymulin, may represent a subset of highly differentiated cells among mouse thymic epithelial cells (TEC). These data reflect the heterogeneity of the thymic epithelium and support the concept that distinct TEC subsets might provide the thymus with different microenvironments.  相似文献   

10.
11.
E Debus  K Weber  M Osborn 《The EMBO journal》1982,1(12):1641-1647
Four monoclonal antibodies designated CK1 - CK4 were obtained from fusions of mouse myeloma F0 cells with spleen cells from BALB/c mice immunized with cytoskeletal preparations made by treatment of human HeLa cells with non-ionic detergents. These IgG1 type antibodies all recognize, in immune blots, cytokeratin 18 (45 kd, pI 5.7) in the catalogue of 19 human cytokeratin species developed by Moll et al. (1982). Immunofluorescence microscopy on human material shows that CK1 - CK4 stain a wide variety of simple epithelia (e.g., intestine, respiratory and urinary systems, liver, glandular epithelia) but do not stain stratified squamous epithelia (e.g., oesophagus, epidermis) or non-epithelial cells. The immunofluorescence results, developed mainly by gel electrophoresis, support the concept of cytokeratin divergence in different epithelia and clarify, for cytokeratin 18, some unsolved problems posed by high tissue complexity. CK2 appears specific for human, CK1 and CK3 for primates, while CK4 shows broad cross-species reactivity. Thus, CK1 - CK4 appear to be valuable tools for cytokeratin typing and initial experiments also suggest that they can be used to further subdivide human tumours of epithelial origin.  相似文献   

12.
The cytokeratins are the intermediate filament proteins characteristic of epithelial cells. In human cells, some 20 different cytokeratin isotypes have been identified. Epithelial cells express between two and ten cytokeratin isotypes and the consequent profile which reflects both epithelial type and differentiation status may be useful in tumour diagnosis. The transitional epithelium or urothelium of the urinary tract shows alterations in the expression and configuration of cytokeratin isotypes related to stratification and differentiation. In transitional cell carcinoma, changes in cytokeratin profile may provide information of potential diagnostic and prognostic significance. The intensification of immunolabelling with some CK8 and CK18 antibodies may underly an active role in tumour invasion and foci of CK17-positive cells may represent proliferating populations. Loss of CK13 is a marker of grade and stage and de novo expression of CK14 is indicative of squamous differentiation and an unfavourable prognosis. However, perhaps the most important recent finding is the demonstration that a normal CK20 expression pattern is predictive of tumour non-recurrence and can be used to make an objective differential diagnosis between transitional cell papilloma and carcinoma. This review will consider cytokeratin expression in urothelium and discuss the application of cytokeratin typing to the diagnosis and prognosis of patients with TCC.  相似文献   

13.
The in vitro characteristics of spontaneous thymomas from BUF/Mna rats, a strain with a high incidence of these tumors, were studied. In primary cultures, the adherent cells consisted of mononuclear macrophages, mono- and multi-nuclear epithelial cells and some fibroblastic cells on day 3. The macrophages rapidly increased in number with the formation of large multinuclear cells by day 9. A modest increase in the number and nuclearity of macrophages was also noted in adherent cultures of normal thymuses from 5-week-old BUF/Mna rats. On the other hand, in cultures of thymic cells from 1-year-old or 5-week-old ACI/NMs rats, a normal control rat strain, macrophages did not increase in number and only rarely formed multinuclear cells in adherent cell cultures. These results suggest that abnormal proliferation signal(s) to thymic macrophages and/or their progenitor cells accompanies and may be involved in the development of thymomas in BUF/Mna rats.  相似文献   

14.
Microenvironment of thymic myoid cells in myasthenia gravis   总被引:3,自引:0,他引:3  
The microenvironment of myoid cells (MyCs) was studied in myasthenia gravis (MG) thymitis with lymphoid follicular hyperplasia (LFH) (nine cases) and with diffuse B cell infiltration (one case), and compared with findings in the thymuses of non-myasthenic control subjects (ten cases). Double immunostaining was used to demonstrate MyCs labelled by anti-desmin together with other thymic components such as keratin-positive epithelial cells, Ki-M 1-positive interdigitating reticulum cells (IDCs), Ki-M 4-positive follicular dendritic reticulum cells, Ki-M 6-positive macrophages, CD22-positive B-cells, CD1-positive cells, CD3-positive T-cells or HLA-DR-positive cells. Round or elongated MyCs were confined to the thymic medulla and were surrounded by CD3-positive T-cells and CD22-positive B-cells. In MG thymitis MyCs were localized in the vicinity of, but not inside germinal centres (GCs). MyCs were always HLA-DR-negative, but were invariably embedded in a cellular micromilieu with strong HLA-DR expression. A remarkable feature of MG thymitis was that the great majority of MyCs were in intimate contact with intramedullary IDCs. Morphometric studies confirmed that such contacts were significantly less frequent in thymuses from non-myasthenic subjects. This indicates that an IDC-dependent antigen-presenting process for T-cells may actively involve MyCs in MG thymitis.  相似文献   

15.
Using four human tumor cell lines, MCF-7 and T47-D from breast tumors, MOLT-4 and K-562 from leukemia, flow cytometric DNA analysis of pure and mixed cell population was performed using monoclonal antibodies to cytokeratin to distinguish cytokeratin-containing carcinoma cells from leukemia cells which do not contain cytokeratins. Surprisingly, on pure or mixed K-562 cells, we found positive labeling with KL1, CK8, and CK18 antibodies (results confirmed by immunocytology). This preliminary study has allowed a DNA analysis on epithelial cells of human breast tumors.  相似文献   

16.
In situ implantation of a quail wing bud into a chick embryo at 4 days of incubation (E4) regularly results in the normal development of the implant followed by its acute rejection starting within two weeks post-hatching. If the epithelial thymic rudiments of the quail donor are implanted into the branchial arch area of the chick recipient after partial removal of its own thymic primordia, a chimeric thymus develops in the chick host and this induces tolerance to the quail wing by the chick recipient. The species identity of cells in chimeric thymuses was mapped using Feulgen-Rossenbeck' staining and immunolabelling with monoclonal antibodies directed against quail or chick B-L antigens. Certain lobes contained only chick cells both at the stromal and hemopoietic cell levels. Others had a quail epithelial stroma containing host hemopoietically derived cells. Only chimeras in which at least one third of the thymic lobes were chimeric showed permanent tolerance to the grafted wing. Since the two species exhibit distinct developmental rates, we decided to study the kinetics of thymic involution after birth. Although the changes in thymus weight and histological structure are fundamentally similar in quail and chick, those in the quail start about 7-8 weeks earlier. In the chimeric thymuses, the lobes whose epithelial cells were quail involuted at the rate of control quail showing no influence of the hemopoietic thymic compartment in this process. Tolerance induced by the thymic epithelium during embryogenesis and in early postnatal life was maintained after a profound involution of the quail thymic graft had occurred.  相似文献   

17.
The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 - reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissue-specific subset of keratins which are related to the differentiation of the cells.  相似文献   

18.
Summary The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 — reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissuspecific subset of keratins which are related to the differentiation of the cells.  相似文献   

19.
The antigenic profile of 13 normal formalin-fixed, paraffin-embedded human main and accessory lacrimal glands, biopsied from patients aged 11 to 78 years, was studied using a panel of 27 polyclonal and monoclonal antibodies. Secretory cells of lacrimal acini reacted with antibodies to S-100 protein and simple epithelium-type cytokeratins CK 7, CK 8, CK 18, and CK 19. Their luminal membranes were labeled with antibodies to carcinoembryonic antigen, epithelial membrane antigen, and epithelial glycoproteins recognized by Ber-EP4. Myoepithelial cells were often immunopositive for S-100 protein, vimentin, glial fibrillary acidic protein (GFAP), and alpha-smooth muscle actin. More rarely, they reacted with antibodies recognizing CK 5, CK 13, and CK 14, which consistently labeled the basal cells of lacrimal ducts. Unlike myoepithelial cells, basal ductal cells were immunopositive for CK 7, CK 8, CK 18, and CK 19. In main excretory ducts, dendritic melanocyte-like cells co-expressing vimentin and S-100 protein intermingled with ductal epithelial cells. The luminal cells of lacrimal ducts basically paralleled secretory cells in their antigenic profile, although they lacked Ber-EP4 and were immunopositive for CK 4. Antibodies to neuron-specific enolase and synaptophysin reacted with nerve fibers among negatively reacting secretory acini. This antigenic profile closely parallels that of salivary glands and provides a basis for studies of lacrimal gland pathology.  相似文献   

20.
Summary The immunocytochemical localization of cytokeratin and vimentin in rat eye tissues was investigated using a panel of 39 monoclonal antibodies specific for single or multiple of cytokeratin polypeptides and one polyclonal anti CK20 antiserum. The retinal and the ciliary body pigment epithelia only expressed cytokeratins 8 and 18, whereas the fetal retinal pigment epithelium and focally the adult epithelium, in the transition zone of retina and ciliary body, exhibited a reactivity for cytokeratin 19. In contrast, the non-pigmented ciliary epithelium was positive for vimentin only.In the rat conjunctiva distributed goblet cell clusters were selectively stained with cytokeratin 7, 8, 18 and 19 specific monoclonal antibodies. Among them a group of cytokeratin 8 and 18 specific monoclonal antibodies which stained the goblet cells as well as cytokeratin 8 and 18 positive internal controls did not react with either the cytokeratin 8 and 18 positive neuroectodermal cells of the rat eye nor the rat choroid plexus epithelium. This indicates differences in the phenotype e.g. conformational epitope changes, of neuroectodermal derived and other cytokeratins. The corneal and conjunctival epithelium showed a more complex distribution of squamous epithelium type cytokeratins. The limbal region as a transient zone connecting both epithelia exhibited a changing cytokeratin pattern. In general, the study emphasized the necessity to work with an enlarged antibody panel to avoid misleading results in the immunolocalization of cytokeratins.Dedicated to Prof. Dr. H.J. Scharf (Halle, FRG) on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号