首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitreoscilla hemoglobin (VHb) has been successfully used to enhance production of foreign proteins in several microorganisms including Escherichia coli. We compared the expression of an oxygen-dependent foreign protein, green fluorescent protein (GFP) under co-expression of VHb in two typical industrial E. coli strains, BL21 (a B derivative) and W3110 (a K12 derivative), which have different metabolic properties. We employed the nar oxygen-dependent promoter for self-tuning regulation of VHb expression due to the natural transition of dissolved oxygen (DO) level during culture. We observed several interesting and differing behaviors in cultures of the two strains. VHb co-expression showed a positive influence on expression, and even on solubility, of GFP in both strains; while strain BL21 had the higher GFP expression level, W3110 showed higher solubility of expressed GFP. GFP expression in strain BL21 was very largely affected by variation of aeration environments, but W3110 was not significantly impacted. We surmised that this arose from different oxygen utilization abilities and indeed the two strains showed different patterns of oxygen uptake rate. Interestingly, the VHb co-expressing W3110 strain exhibited a peculiar increasing pattern of GFP expression during the late culture period even under low aeration conditions and this enhancement was more obvious in large-scale cultures. Therefore, this strain could be successfully employed in practical large-scale production cultures where DO levels tend to be limited. Electronic Publication  相似文献   

2.

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA, which, together with W3110recAvgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.

  相似文献   

3.
Summary This study examined the transfer of the plasmid pBGH1, an expression vector for bovine somatotropin (BST), fromEscherichia coli K-12 strain W3110G [pBGH1] to indigenous microorganisms present in flasks containing Missouri River water. Strain LBB269 is a nalidixic acid-resistant derivative of W3110G which was used as a plasmid-free control strain in these studies. Water samples were inoculated with strains W3110G [pBGH1] and LBB269; after 21 days of incubation the number of viable colony-forming units (CFU) of W3110G [pBGH1] and LBB269 were reduced from an initial level of about 1×107 CFU per ml to less than 1 CFU per 100 ml. At this time indigenous microbes resistant to both ampicillin and tetracycline (the antibiotic resistance markers on pBGH1) were isolated from 100 ml of water from each of the flasks inoculated with either strain W3110G [pBGH1] or LBB269. Plasmid DNA was isolated from these organisms and examined for sequences containing the gene for BST from pBGH1, using a polymerase chain reaction (PCR) assay. As expected, the day 0 sample from the flask inoculated withE. coli K-12 strain W3110G [pBGH1] gave a positive PCR response and the day 0 sample from the flask inoculated withE. coli K-12 strain LBB269 gave a negative PCR response. All of the day 21 samples containing indigenous microbes isolated from flasks that were inoculated with either W3110G [pBGH1] or LBB269 were negative in the PCR assay, indicating that the target sequence from pBGH1 was not present in any of these indigenous microorganisms. The results of this particular assay indicate that pBGH1 or the portion of pBGH1 including the BST structural gene had not been transferred from W3110G [pBGH1] to indigenous microbial inhabitants of the Missouri River water flasks during this study.  相似文献   

4.
The Vitreoscilla hemoglobin (VHb) gene (vgb) was integrated into the chromosome of Bacillus thuringiensis BMB171 using integrative vector pEG491. The production of VHb was confirmed by CO-difference spectra analysis. Fermentation experiments results showed that with the production of VHb, the critical oxygen concentration (COC) of the host strain was reduced from 18 to 12%. The maximum viable cell counts of the VHb+ strain in high, middle, and low aeration/agitation fermentations were 0.94-, 1.23-, and 1.59-fold of those of the VHb strain, respectively. Under the same conditions, the yields of insecticidal crystal proteins (ICP) by VHb+ strain were 1.22-, 1.63-, and 3.13-fold of those of the VHb strain. The production of VHb also accelerated the formation of ICP and spores. These results indicated that the production of VHb could improve the cell density and ICP yield of B. thuringiensis, especially under low aeration/agitation condition.  相似文献   

5.
Co-expression of Vitreoscilla hemoglobin (VHb) can enhance production of foreign proteins in several microorganisms, including Escherichia coli. Production of foreign proteins [green fluorescent protein (GFP) and organophosphorous hydrolase (OPH)] has been examined in two typical industrial E. coli strains, W3110 (a K12 derivative) and BL21 (a B derivative). In particular, we investigated the effects of VHb co-expression and media glucose concentration on target protein production. We employed the nar O(2)-dependent promoter for self-tuning of VHb expression based on the natural changes in dissolved O(2) levels over the duration of culture. Foreign protein production in strain BL21 was decreased by a high glucose concentration but co-expression of VHb had no effect on this. In contrast, co-expression of VHb in strain W3110 overrode the glucose-induced repression and resulted in steady expression of foreign proteins.  相似文献   

6.
The streptokinase (SK) gene from S. equisimilis H46A (ATCC 12449) was cloned in E. coli W3110 under the control of the tryptophan promoter. The recombinant SK, which represented 15% of total cell protein content, was found in the soluble fraction of disrupted cells. The solubility of this SK notably differed from that of the product of the SK gene from S. equisimilis (ATCC 9542) which had been cloned in E. coli W3110 by using similar expression vector and cell growth conditions, and occurred in the form of inclusion bodies.  相似文献   

7.
A cultivation strategy combining the advantages of temperature-limited fed-batch and probing feeding control is presented. The technique was evaluated in fed-batch cultivations with E. coli BL21(DE3) producing xylanase in a 3 liter bioreactor. A 20% increase in cell mass was achieved and the usual decrease in specific enzyme activity normally observed during the late production phase was diminished with the new technique. The method was further tested by growing E. coli W3110 in a larger bioreactor (50 l). It is a suitable cultivation technique when the O2 transfer capacity of the reactor is reached and it is desired to continue to produce the recombinant protein.Revisions requested 13 April 2005; Revisions received 6 May 2005  相似文献   

8.
A derivative strain of Escherichia coli MG1655 for d-lactate production was constructed by deleting the pflB, adhE and frdA genes; this strain was designated “CL3.” Results show that the CL3 strain grew 44% slower than its parental strain under nonaerated (fermentative) conditions due to the inactivation of the main acetyl-CoA production pathway. In contrast to E. coli B and W3110 pflB derivatives, we found that the MG1655 pflB derivative is able to grow in mineral media with glucose as the sole carbon source under fermentative conditions. The glycolytic flux was 2.8-fold higher in CL3 when compared to the wild-type strain, and lactate yield on glucose was 95%. Although a low cell mass formed under fermentative conditions with this strain (1.2 g/L), the volumetric productivity of CL3 was 1.31 g/L h. In comparison with the parental strain, CL3 has a 22% lower ATP/ADP ratio. In contrast to wild-type E. coli, the ATP yield from glucose to lactate is 2 ATP/glucose, so CL3 has to improve its glycolytic flux in order to fulfill its ATP needs in order to grow. The aceF deletion in strains MG1655 and CL3 indicates that the pyruvate dehydrogenase (PDH) complex is functional under glucose-fermentative conditions. These results suggest that the pyruvate to acetyl-CoA flux in CL3 is dependent on PDH activity and that the decrease in the ATP/ADP ratio causes an increase in the flux of glucose to lactate.  相似文献   

9.
The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.  相似文献   

10.
High cell-density cultivations are the preferred system for biomolecules production by Escherichia coli. It has been previously demonstrated that a strain of E. coli with a modified substrate transport system is able to attain high cell densities in batch mode, due to the very low overflow metabolism displayed. The use of elevated amounts of glucose from the beginning of the cultivation, eliminates the existence of substrate gradients due to deficient mixing at large-scale. However, the large amounts of oxygen demanded resulted in microaerobic conditions after some hours of cultivation, even at small-scale. In this work, the effect of expressing the Vitreoscilla hemoglobin (VHb) in the engineered strain during batch cultures using high-glucose concentrations was tested. Together, the expression of VHb and the modified substrate transport system resulted in a 33% increase of biomass production compared to the parental strain (W3110) lacking the VHb in batch cultivations using 25 g/L of glucose. When 50 g/L of glucose were used, expression of VHb in the modified strain led to 11% higher biomass production compared to W3110. The VHb also increased the growth rates of the strains by about 30% in the aerobic phase and more than 200% in the microaerobic phase of batch cultivation.  相似文献   

11.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   

12.
Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, σ38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of σ38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a σ38 preparation from WC196 showed that the 33th residue of σ38 is a serine residue. The ΔrpoS ΔcadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of σ38, expressed a significant amount of Ldc and accumulated a large amount of σ38. However, the ΔrpoS ΔcadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither σ38 nor Ldc significantly.  相似文献   

13.
Microbial production of butanediol and acetoin has received increasing interest because of their diverse potential practical uses. Although both products are fermentative in nature, their optimal production requires a low level of oxygen. In this study, the use of a recombinant oxygen uptake system on production of these metabolites was investigated. Enterobacter aerogenes was transformed with a pUC8-based plasmid carrying the gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb). The presence of vgb and production of VHb by this strain resulted in an increase in viability from 72 to 96 h in culture, but no overall increase in cell mass. Accumulation of the fermentation products acetoin and butanediol were enhanced (up to 83%) by the presence of vgb/VHb. This vgb/VHb related effect appears to be due to an increase of flux through the acetoin/butanediol pathway, but not at the expense of acid production.  相似文献   

14.
The gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed at about 4 nmol VHb g−1 of cells. The maximum cell mass (OD600) of vgb-bearing G. amarae was greater than that of untransformed G. amarae for a variety of media and aeration conditions (2.8-fold under normal aeration and 3.4-fold under limited aeration in rich medium, and 3.5-fold under normal aeration and 3.2-fold under limited aeration in mineral salts medium). The maximum level of trehalose lipid from cultures grown in rich medium plus hexadecane was also increased for the recombinant strain, by 4.0-fold in broth and 1.8-fold in cells under normal aeration and 2.1-fold in broth and 1.4-fold in cells under limited aeration. Maximum overall biosurfactant production was also increased in the engineered strain, by 1.4-fold and 2.4-fold for limited and normal aeration, respectively. The engineered strain may be an improved source for producing purified biosurfactant or an aid to microorganisms bioremediating sparingly soluble contaminants in situ.  相似文献   

15.
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.  相似文献   

16.
In order to produce a harmful protein more efficiently, this expression cassette, dubbed pCol-MICT, is directed by the colicin promoter, and was constructed by the insertion of a rrnBT1T2 fragment of pEXP7, and a MxelnteinCBD fragment of pTXB3, into pSH375. To test whether harmful proteins, including proteolytic enzymes, could be effectively produced by this cassette, the carboxypeptidase (CPase)Taq gene was inserted into the pCol-MICT cassette to yield pCol-CPaseTaq-MICT.E. coli W3110 cells harboring pCol-CPaseTaq-MICT produced a large quantity of this enzyme, as much as 47.2 mg of purified from per liter of culture, when cultured in the presence of mitomycin C (0.4 μg/mL). This indicates that the colicin promoter-controlledE. coli expression cassette was able to produce almost 8 times of protein than the conventionaltac promoter-based system, and that this cassette may be useful in the synthesis of other harmful proteins.  相似文献   

17.
Summary Insertion sites of the transposable element IS186 were physically mapped in the genome of E. coli K12 strain BHB2600. This strain maintains four IS186 copies of which three, assigned to 0.3, 14.1 and 51.8 map min., share common map positions with the three IS186 copies in strains W3110 and HB101. The fourth, unique IS copy in BHB2600 maps at 49.3 min. The IS186 data complete the BHB2600 map for all chromosomal sites of known K12-associated IS types.  相似文献   

18.
Vitreoscilla hemoglobin (VHb) gene vgb equipped with a native promoter Pvgb or a tac promoter Ptac was introduced into Corynebacterium glutamicum ATCC14067, respectively. Ptac was proven to be more suitable for expressing VHb protein in higher concentration in both Escherichia coli and C. glutamicum strains compared with the native vgb promoter Pvgb. VHb-expressing C. glutamicum exhibited higher oxygen uptake rate and enhanced cell growth. Recombinant C. glutamicum harboring vgb gene equipped with Ptac promoter produced 23% more l-glutamate in shake-flask culture and grew to 30% more cell density and formed 22% more l-glutamate in fermentor studies compared with the wild-type strain. When a site-directed mutagenesis in which Tyr405 was replaced by a phenylalanine residue (Y405F) was performed on glutamine synthesis gene, recombinant C. glutamicum overexpressing the mutated gene glnA′ was able to produce l-glutamine effectively. Co-expression of vgb and glnA′ genes in C. glutamicum produced 17 g/l l-glutamine in shake flask culture, approximately 30% more than that produced by the recombinant harboring only glnA′ gene. In fermentor cultivation, the recombinant yielded 25% more cells and produced 40.5 g/l l-glutamine. In this study, it was clearly demonstrated that VHb significantly enhanced cell growth, l-glutamate, and l-glutamine production by recombinant C. glutamicum.  相似文献   

19.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

20.
P64k is a Neisseria meningitidis high molecular weight protein present in meningococcal vaccine preparations. The lpdA gene, codifying for this protein, was cloned in Escherichia coli and the P64k protein was expressed in Escherichia coli K12 W3110 under the control of the tryptophan promoter. The recombinant bacteria were grown in batch or fed-batch cultures. P64k was expressed as an intracellular soluble form at about 40% of the total cellular protein. A final productivity of 215 mg l–1 h–1 and 11 g cell dry wt l–1 were obtained when the fed-batch culture conditions were optimised, compared to 30% of total protein, and a productivity of 76 mg l–1 h–1 and 5.1 g cell dry wt l–1 in batch cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号