首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.  相似文献   

2.
3.
4.
Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa   总被引:1,自引:0,他引:1  
A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F3 population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences in the top arm of Arabidopsis chromosome 3, suggesting a synteny between the two species. For fine mapping of Crr3, a number of STS markers were developed based on genomic information from Arabidopsis. We obtained polymorphisms in 23 Arabidopsis-derived STS markers, 11 of which were closely linked to Crr3. The precise position of Crr3 was determined using a population of 888 F2 plants. Eighty plants showing recombination around Crr3 locus were selected and used for the mapping. A fine map of 4.74 cM was obtained, in which two markers (BrSTS-41 and BrSTS-44) and three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were cosegregated. Marker genotypes of the 21 selected F2 families and CR tests of their progenies strongly suggested that the Crr3 gene is located in a 0.35 cM segment between the two markers, BrSTS-33 and BrSTS-78.  相似文献   

5.
Four cDNA clones coding for different Artemia actin isoforms have been isolated. Three of the clones contain the complete coding sequences while the fourth one lacks 145 bases, coding for the 49 amino terminal amino acids of the protein. The amino acid sequences predicted for the four actin isoforms identified are highly homologous to insect actins as well as to vertebrate cytoplasmic actins. The four identified cDNA clones code for mRNAs of 5.2, 1.9, 1.6 and 1.8 kb, respectively, whose expression is regulated during development. Three of the actin mRNAs are present in cryptobiotic embryos while the other is not. The steady-state levels of all four mRNAs increase during development to reach maximal levels by 10-15 hours of development and decrease thereafter. The total number of actin genes encoded in the Artemia genome has been estimated as 8 to 10 by Southern analysis of total DNA.  相似文献   

6.
In this study, BcHHP3 was isolated from Pak-choi; it has an open-reading frame (ORF) of 1044 base pairs, encoding 347 amino acids, a molecular weight of 39.35?kDa, isoelectric point (pI) of 9.08, an instability index of 48.35, and grand average of hydropathicity of 0.382. Multi-alignment and phylogenetic analysis showed that BcHHP3 bears a high similarity to AtHHP2. As predicted by SOMPA and SWISS-MODEL databases, the structure of the BcHHP3 protein is relatively stable and highly conservative. Real-time quantitative polymerase chain reaction (qRT-PCR) analysis showed that BcHHP3 was induced to co-express under cold and abscisic acid (ABA) stresses. The BcHHP3-GFP fusion protein was localized on the cell membrane and nuclear membrane. This work might be useful for future analysis of other HHP-like genes in Pak-choi.  相似文献   

7.
8.
9.
10.
11.
The use of clubroot resistance (CR) genes is an effective and economical approach for controlling Plasmodiophora brassicae, the causal agent of clubroot disease in Chinese cabbage (Brassica rapa) and other Brassica crops. In a previous study, we identified and mapped the CRb locus on chromosome A03 of B. rapa in the doubled-haploid (DH) line ‘CR Shinki DH line’ of Chinese cabbage. In this study, CRb, a dominant gene conferring resistance to pathotype 4 of P. brassicae, was finely mapped in combination with bulked segregant analysis and bioinformatics analysis (BIA). Using 1,486 highly susceptible individuals and 2,896 individuals from two separate F2 populations of ‘702-5’ (B. rapa ssp. chinensis) ×  ‘CR Shinki DH line,’ the CRb locus was narrowed to a region of approximately 0.14 cM between two flanking markers, TCR79 and TCR108. The sequences of seven newly developed markers linked to CRb were landed on bacterial artificial chromosome (BAC) of the reference B. rapa ‘Chiifu-401-42’ by BIA, and a physical map consisting of three BAC clones was constructed. The CRb locus was defined as an interval of approximately 83.5 kb on a BAC clone (KBrB085J21). The target interval contained one Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR–NBS–LRR) gene, one NBS–LRR gene, and several putative regulatory genes in the B. rapa genome. The CRb gene was tightly linked to two other CR genes, CRa and CRb Kato . These results provide useful information for isolation of the CRb gene and tightly linked molecular markers for breeding CR in B. rapa.  相似文献   

12.
Lyu  Tianqi  Liu  Weimiao  Hu  Ziwei  Xiang  Xun  Liu  Tingting  Xiong  Xingpeng  Cao  Jiashu 《Plant molecular biology》2020,102(1-2):123-141
Plant Molecular Biology - Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower...  相似文献   

13.
E Hickey  S E Brandon  S Sadis  G Smale  L A Weber 《Gene》1986,43(1-2):147-154
Plasmids containing cDNA copies of mRNAs induced in HeLa cells by heat shock have been isolated and characterized. In vitro translation of RNAs selected by hybridization to plasmid DNAs identified sequences representing the three major classes (89, 70 and 27-kDa) of heat-shock proteins (hsp) and a 60-kDa minor hsp. Plasmids with inserts specific for the 27, 60, and 70-kDa hsp each hybridize with a single discrete size class of heat-inducible mRNA. Plasmids specific for the 89-kDa protein, however, hybridize with either a 2.7- or 2.95-kb mRNA species. Both mRNAs are coordinately induced during heat shock. We show that the characteristic pattern of induction and repression of each class of hsp during sustained hyperthermia is the result of changes in the steady state level of each mRNA.  相似文献   

14.
To perform comparative studies of CR (clubroot resistance) loci in Brassica oleracea and Brassica rapa and to develop marker-assisted selection in B. oleracea, we constructed a B. oleracea map, including specific markers linked to CR genes of B. rapa. We also analyzed CR-QTLs using the mean phenotypes of F3 progenies from the cross of a resistant double-haploid line (Anju) with a susceptible double-haploid line (GC). In the nine linkage groups obtained (O1-O9), the major QTL, pb-Bo(Anju)1, was derived from Anju with a maximum LOD score (13.7) in O2. The QTL (LOD 5.1) located in O5, pb-Bo(GC)1, was derived from the susceptible GC. Other QTLs with smaller effects were found in O2, O3, and O7. Based on common markers, it was possible to compare our finding CR-QTLs with the B. oleracea CR loci reported by previous authors; pb-Bo(GC)1 may be identical to the CR-QTL reported previously or a different member contained in the same CR gene cluster. In total, the markers linked to seven B. rapa CR genes were mapped on the B. oleracea map. Based on the mapping position and markers of the CR genes, informative comparative studies of CR loci between B. oleracea and B. rapa were performed. Our map discloses specific primer sequences linked to CR genes and includes public SSR markers that will promote pyramiding CR genes in intra- and inter-specific crosses in Brassica crops. Five genes involved in glucosinolates biosynthesis were also mapped, and GSL-BoELONG and GSL-BoPro were found to be linked to the pb-Bo(Anju)1 and Bo(GC)1 loci, respectively. The linkage drag associated with the CR-QTLs is briefly discussed.  相似文献   

15.
16.
17.
18.
Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE‐associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE‐associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter‐Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE‐associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self‐pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety‐two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR‐REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation.  相似文献   

19.
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号