首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The position and conformation of the N-terminal helix of free ribosomal protein S15 was earlier found to be modified under various conditions. This variability was supposed to provide the recognition by the protein of its specific site on 16S rRNA. To test this hypothesis, we substituted some amino acid residues in this helix and assessed effects of these substitutions on the affinity of the protein for 16S rRNA. The crystal structure of the complex of one of these mutants (Thr3Cys S15) with the 16S rRNA fragment was determined, and a computer model of the complex containing another mutant (Gln8Met S15) was designed. The available and new information was analyzed in detail, and the N-terminal helix was concluded to play no significant role in the specific binding of the S15 protein to its target on 16S rRNA.  相似文献   

2.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

3.
Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.  相似文献   

4.
rig, a gene originally isolated from a rat insulinoma cDNA library, codes for a basic 145 amino acid protein [( 1986) Diabetes 35, 1178-1180]. Here we show that the immunoreactivity to a monoclonal antibody against the deduced rig protein and the translation product of rig mRNA comigrated with ribosomal protein S15. The amino acid sequence of ribosomal protein S15 purified from rat liver coincided with that deduced from the nucleotide sequence of rig mRNA, but there were indications that the initiator methionine was removed and the succeeding alanyl residue was monoacetylated. From these results, we conclude that the product of rig is ribosomal protein S15.  相似文献   

5.
6.
A protein required for the binding of thiostrepton to ribosomes of Bacillus megaterium has been purified and further characterized by immunological techniques. This protein, which does not bind the drug off the ribosome, is serologically-homologous to Escherichia coli ribosomal protein L11 and is designated BM-L11. Ribosomes from certain thiostrepton-resistant mutants of B. megaterium appear to be totally devoid of protein BM-L11 as judged by modified immunoelectrophoresis. Such ribosomes are significantly less sensitive than those from wild-type organisms to the action of thiostrepton in vitro but retain substantial protein synthetic activity. Re-addition of protein BM-L11 to ribosomes from the mutants restores them to wild-type levels of activity and thiostrepton sensitivity. Thus ribosomal protein BM-L11 is involved not only in binding thiostrepton but also in determining the thiostrepton phenotype.  相似文献   

7.
Translational control of ribosomal protein S15   总被引:5,自引:0,他引:5  
The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.  相似文献   

8.
Ribosomes are the protein factories of every living cell. The process of protein translation is highly complex and tightly regulated by a large number of diverse RNAs and proteins. Earlier studies indicate that Ca(2+) plays a role in protein translation. Calmodulin (CaM), a ubiquitous Ca(2+)-binding protein, regulates a large number of proteins participating in many signaling pathways. Several 40S and 60S ribosomal proteins have been identified to interact with CaM, and here, we report that CaM binds with high affinity to 80S ribosomes and polyribosomes in a Ca(2+)-dependent manner. No binding is observed in buffer with 6 mM Mg(2+) and 1 mM EGTA that chelates Ca(2+), suggesting high specificity of the CaM-ribosome interaction dependent on the Ca(2+) induced conformational change of CaM. The interactions between CaM and ribosomes are inhibited by synthetic peptides comprising putative CaM-binding sites in ribosomal proteins S2 and L14. Using a cell-free in vitro translation system, we further found that these synthetic peptides are potent inhibitors of protein synthesis. Our results identify an involvement of CaM in the translational activity of ribosomes.  相似文献   

9.
In solution, S100B protein is a noncovalent homodimer composed of two subunits associated in an antiparallel manner. Upon calcium binding, the conformation of S100B changes dramatically, leading to the exposure of hydrophobic residues at the surface of S100B. The residues in the C-terminal domain of S100B encompassing Phe(87) and Phe(88) have been implicated in interaction with target proteins. In this study, we used two-hybrid technology to identify specific S100B target proteins. Using S100B as bait, we identify S100A6 and S100A11 as specific targets for S100B. S100A1, the closest homologue of S100B, is capable of interaction with S100B but does not interact with S100A6 or S100A11. S100B, S100A6, and S100A11 isoforms are co-regulated and co-localized in astrocytoma U373 cells. Furthermore, co-immunoprecipitation experiments demonstrated that Ca(2+)/Zn(2+) stabilizes S100B-S100A6 and S100B-S100A11 heterocomplexes. Deletion of the C-terminal domain or mutation of Phe(87) and Phe(88) residues has no effect on S100B homodimerization and heterodimerization with S100A1 but drastically decreases interaction between S100B and S100A6 or S100A11. Our data suggest that the interaction between S100B and S100A6 or S100A11 should not be viewed as a typical S100 heterodimerization but rather as a model of interaction between S100B and target proteins.  相似文献   

10.
11.
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.  相似文献   

12.
In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.  相似文献   

13.
Degradation tags are short peptide sequences that target proteins for destruction by housekeeping proteases. We previously utilized the C-terminal SsrA tag in directed evolution experiments to decrease the intracellular lifetime of a growth-limiting enzyme and thereby facilitate selection of highly active variants. In this study, we examine the N-terminal RepA tag as an alternative degradation signal for laboratory evolution. Although RepA proved to be less effective than SsrA at lowering protein concentrations in the cell, its N-terminal location dramatically reduced the occurrence of truncation and frameshift artifacts in selection experiments. We exploited this improvement to evolve a topologically redesigned chorismate mutase that is intrinsically disordered but already highly active for the conversion of chorismate to prephenate. After three rounds of mutagenesis and high-stringency selection, a robust and more nativelike variant was obtained that exhibited a catalytic efficiency (k(cat)/K(M) = 84000 M(-1) s(-1)) comparable to that of a natural dimeric chorismate mutase. Because of concomitant increases in catalyst yield, the level of intracellular prephenate production increased approximately 30-fold overall over the course of evolution.  相似文献   

14.
15.
A set of Escherichia coli 16S rRNA having unique breaks were prepared using the method of oligodeoxyribonucleotide-directed fragmentation with RNAse H. 16S RNA remained compact or dissociated to separate fragments, depending on the cleavage site location in the RNA structure. 16S rRNAs which have been split at different sites or their isolated fragments were used for a reconstitution of the 30S ribosomal subunits. These reconstituted 30S subunits carrying unique breaks at positions 301, 772, 1047 have the same sedimentation coefficients and electron microscopy images as the native subunit. They were active in the poly(U)-directed cell-free system of synthesis of polyphenylalanine.  相似文献   

16.
17.
The function of the N-terminal amino acids of Saccharomyces cerevisiae hexokinase II was studied in vivo using strains producing a form of hexokinase II lacking its first 15 amino acids (short form). This short form of hexokinase II was produced from a fusion between the promoter region of the PGK1 gene and the HXK2 coding sequence except the first 15 codons. As expected, the in vitro analysis of the short form protein by gel filtration chromatography indicates that the short protein does not form dimers under conditions where the wild-type protein dimerizes. Kinetic studies show that the enzymatic activities are very similar to wild-type behavior. The physiological experiments performed on the strains containing the fusion allele demonstrate that the short form of the enzyme is similar to the wild-type both in terms of phosphorylation of hexoses and glucose repression. We conclude that the N-terminal amino acids of hexokinase II are not required in vivo either for phosphorylation of hexoses or for glucose repression.  相似文献   

18.
Plasma apolipoprotein E (apoE) is a ligand for the cellular uptake of cholesterol-rich plasma lipoproteins. ApoE also inhibits mitogen-stimulated lymphocyte proliferation and gonadotropin-stimulated ovarian theca/interstitial cell androgen production. To address the mechanism(s) by which apoE is active and to understand its interaction with the target cells, we prepared and examined the inhibitory activity of a series of apoE synthetic peptides. ApoE peptides representing amino acid residues 93-112, 141-155, 161-171, 172-182, and 174-193 were not active in either bioassay. However, specific inhibition of both lymphocyte proliferation and ovarian androgen production was observed with a self-conjugate of peptide-(141-155). Furthermore, a synthesized dimeric peptide representing two repeats of sequence-(141-155) (i.e. (141-155)-(141-155] was active as well. In both bioassays, the inhibition observed was not a result of direct cell killing. Furthermore, these apoE peptides exhibited activities with characteristics that were shared with those of native apoE. The results indicate that amino acid residues 141-155 of apoE are responsible for the biological activity of apoE. Furthermore, the results suggest that dimers or multimers of native apoE may be a biologically important species.  相似文献   

19.
Antibodies to synthetic myelin basic protein peptide S82 (TTHYG-SLPQKAQGHRPQDEG) did not react with synthetic peptide S8 (GSLPQKAQGHRPQDENG) and only partially so with synthetic peptide S79 (AQGHRPQDEG); however, the antibodies did react to a considerable extent with an equimolar mixture of S8 and S79. Since the anti-S82 antibodies had previously been shown to be directed to a non-sequential format determinant dependent on the conformation of secondary structure, it seems probable that the mixture of S8 and S79 assumed a format that neither one individually possessed to any great degree.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.Supported by Research Grants NS-10237 (Duke) and NS-15322 (St. Luke's) from the National Institutes of Health and by RG1197-B7 from the National Multiple Sclerosis Society.  相似文献   

20.
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号