首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural phases in various mixtures of soybean phosphatidylethanolamine and egg phosphatidylcholine were studied by X-ray diffraction, freeze fracture electron microscopy, and 31P NMR. An intermediate state between bilayer and hexagonal structures was found at a composition of 10–25 mol% of phosphatidylcholine. The intermediate state consists of closely packed multilayers, together with arrays of lipidic intramembranous particles. The arrays of lipidic intramembranous particles, possibly membrane invaginations, give rise to an anisotropic 31P NMR spectrum commonly accredited to a hexagonal structure. A phase diagram of this mixed system is proposed. The compositional range at which the intermediate state exists coincides with the range of maximal mitochondrial ATPase activity when these lipids are used in reconstitution experiments.  相似文献   

2.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

3.
An oxidized form of cholesterol, atheronal, is a form found in vivo that has been associated with human pathologies. We have studied mixtures of this oxidized sterol with the phospholipids phosphatidylethanolamine and phosphatidylcholine. We used phospholipids either with palmitoyl and oleoyl acyl chains on the C1 and C2 carbon atoms of glycerol or with both acyl chains being palmitoleoyl. We also compared the effects of atheronal on the curvature properties of these lipids with the action of cholesterol. We studied the bilayer to hexagonal phase transition temperature of mixtures of these lipids using differential scanning calorimetry as well as the dimensions of the hexagonal phase cylinders using X-ray diffraction. Disordering of the lamellar phase was also qualitatively assessed by the loss of sharp diffraction peaks. Our results demonstrate that the modulation of membrane curvature in these systems depends not only on the nature of the sterol, but also on the acyl chain composition of the phospholipids used. In addition, some of the effects of atheronal could be ascribed to reaction of the aldehyde and ketone groups of this oxidized sterol with the amino group of phosphatidylethanolamine.  相似文献   

4.
We have recorded high resolution proton magnetic resonance spectra of sonicated phospholipid vesicles. The following lipids were used in separate experiments: phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine from egg yolk as well as dimyristoyl phosphatidylcholine. Mixed lipid vesicles were also investigated. Assignments of the peaks associated with the various protons of the different lipids are presented. It is shown that in favorable cases, it is possible to resolve the different phospholipid head groups of mixed lipid samples. Spin lattice relaxation times (T1) of each peak were collected at 500 MHz and 90 MHz. The influence of the addition of a small concentration of spin labeled phospholipid on i) the linewidths ii) the spin lattice relaxation times, was determined. It is shown that nitroxide radicals selectively broaden the peaks associated with the protons localized at a comparable depth of the bilayer. On the other hand, T1 are less selectively perturbed. Potential applicability of 1H-NMR for the investigation of lipid-proton specificity in membranes is discussed.  相似文献   

5.
We studied the properties of a series of phosphatidylcholine molecules with branched acyl chains. These lipids have previously been shown to have marked stimulatory effects on the side-chain cleavage activity of cytochrome P450SCC (CYP11A1), an enzyme of the inner mitochondrial membrane. The synthetic lipids used were diacyl phosphatidylcholines with the decanoyl, dodecanoyl or tetradecanoyl chain having a hexyl, octyl or decyl straight chain aliphatic branch at the 2-position. All three lipids lowered the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine, the lipids with longer acyl chains being more effective in this regard. As pure lipids all of the forms were found by X-ray diffraction to be predominantly in the hexagonal phase (HII) over the entire temperature range of 7-75 degrees C. The properties of the HII phase were unusual with regard to the small size of the lattice spacings and the small temperature dependence of the spacings. We used tetradecane to relieve hydrocarbon packing constraints to determine the intrinsic radius of curvature of the lipid monolayer. The elastic bending modulus was measured in the presence of tetradecane by introducing an osmotic gradient across the hexagonal phase cylinders with aqueous solutions of poly(ethylene glycol). The elastic bending modulus was found to be higher than that observed with other lipids and to increase with temperature. Both the small intrinsic radius of curvature and the high elastic bending modulus indicate that the presence of these lipids in bilayer membranes will impose a high degree of negative curvature strain.  相似文献   

6.
A series of phosphatidylcholines and phosphatidylethanolamines was synthesized containing two acyl chains of the following polyunsaturated fatty acids: linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4) and docosahexaenoic acid (22:6). In addition two phospholipids with mixed acid composition were synthesized: 16:0/18:1c phosphatidylcholine and 16:0/18:1c phosphatidylethanolamine. The structural properties of these lipids in aqueous dispersions in the absence and in the presence of equimolar cholesterol were studied using 31P-NMR, freeze fracturing and differential scanning calorimetry (DSC).The phosphatidylcholines adopt a bilayer configuration above 0°C. Incorporation of 50 mol% of cholesterol in polyunsaturated species induces a transition at elevated temperatures into structures with 31P-NMR characteristics typical of non-bilayer organizations. When the acyl chains contain three or more double bonds, this non-bilayer organization is most likely the hexagonal HII phase, 16:0/15:1c phosphatidylethanolamine shows a bilayer to hexagonal transition temperature of 75°C. The polyunsaturated phosphatidylethanolamines exhibit a bilayer to hexagonal transition temperature below 0°C which decreases with increasing unsaturation and which is lowered by approximately 10°C upon incorporation of 50 mol% of cholesterol. Finally, it was found that small amounts of polyunsaturated fatty acyl chains in a phosphatidylethanolamine disproportionally lower its bilayer to hexagonal transition temperature.  相似文献   

7.
Small unilamellar vesicles comprised of a mixture of phosphatidylethanolamine/phosphatidylcholine/cholesterol (3 : 1 : 2) fuse to form large multilamellar vesicles on increasing the temperature from 0 to 50°C. This event is associated with the appearance of lipidic particles at the fusion sites, consistent with a role as intermediary structures during the fusion process. Further, for phosphatidylcholine/cardiolipin (1 : 1) liposomes in the presence of Mn2+ a direct relationship between lipidic particles and the hexagonal (HII) phase is demonstrated which suggests that lipidic particles can also occur as intermediaries between bilayer and hexagonal (HII) structures.  相似文献   

8.
The effect of alpha-tocopherol on the structure and phase behaviour of mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine has been examined by synchrotron X-ray diffraction. Equimolar mixtures of dioleoylphosphatidylethanolamine:dioleoylphosphatidylcholine and dimyristoylphosphatidylcholine:dioleoylphosphatidylethanolamine did not show evidence of phase separation of an inverted hexagonal structure typical of alpha-tocopherol and phosphatidylethanolamine from lamellar phase. Mixed dispersions of dioleoyl derivatives of phosphatidylethanolamine:phosphatidylcholine (3:1) form a typical miscible gel phase at low temperatures but which phase separates into lamellar liquid-crystal and inverted hexagonal phases at temperatures greater than 65 degrees C. The presence of 1, 2 or 5 mol% alpha-tocopherol caused a decrease in the temperature at which the inverted hexagonal phase appears. Phase separation of non-lamellar phase from lamellar gel phase can be detected in the presence of 7.5 and 10 mol% alpha-tocopherol, indicating a limited capacity of the phosphatidylcholine to incorporate alpha-tocopherol into the lamellar domain. A partial phase diagram of the ternary mixture has been constructed from the X-ray scattering data. It was concluded that there is no preferential interaction of alpha-tocopherol with phosphatidylethanolamine in mixed aqueous dispersions containing phosphatidylcholines.  相似文献   

9.
We have compared the properties of two N-acyl derivatives of dilauryl phosphatidylethanolamine on lipid polymorphism, vesicle leakage and Sendai virus fusion. The derivatives contained either an N-lauroyl group (NLPE) or an N-acetyl group (NAcPE). Only the NAcPE markedly affected the bilayer to hexagonal transition temperature of dielaidoyl phosphatidylethanolamine, shifting it to higher values. In contrast the NLPE slightly lowered this phase transition temperature. The two lipids also have opposite effects on leakage from small unilamellar vesicles of egg phosphatidylcholine. The NLPE inhibits leakage, while the NAcPE promotes it. This vesicle stabilizing effect of NLPE against leakage is not manifested in alterations of rates or extents of Sendai virus fusion to liposomes of egg phosphatidylethanolamine plus 2% ganglioside GD1a. The NLPE has no effect, while the NAcPE reduces the observed fusion, at least in part as a consequence of a reduction in the final extent of fusion. These results demonstrate that the bilayer stabilizing effects of NLPE do not result in a lower rate of viral fusion. Furthermore, these bilayer stabilizing effects against leakage are not solely a function of the lipid headgroup but also require a structure with three long acyl chains. The reduced leakage is not related to a loss in monolayer curvature strain.  相似文献   

10.
11.
J J Cheetham  E Wachtel  D Bach  R M Epand 《Biochemistry》1989,28(22):8928-8934
The phase behavior of mixtures of cholesterol or epicholesterol with phosphatidylethanolamine was studied by differential scanning calorimetry and by X-ray diffraction. Discrete domains of cholesterol are detected by X-ray diffraction in the L alpha phase of phosphatidylethanolamine from egg yolk and synthetic dielaidoylphosphatidylethanolamine beginning at mole fractions of 0.35-0.4 cholesterol. Separate domains of crystalline epicholesterol can also be detected in the L alpha phase of dielaidoylphosphatidylethanolamine by X-ray diffraction at as little as 0.16 mole fraction of epicholesterol. This is a result of poor miscibility of the epicholesterol with dielaidoylphosphatidylethanolamine. Epicholesterol does not alter the L beta----L alpha transition or bilayer spacing. Epicholesterol also has little effect on the diameter of the cylinders in the hexagonal phase. Formation of the inverted hexagonal phase is facilitated by addition of small amounts of cholesterol (mole fraction less than 0.2) in both egg phosphatidylethanolamine and dielaidoylphosphatidylethanolamine. However, at higher mole fractions of cholesterol, the stability of the liquid-crystalline phase is found to increase markedly for dielaidoylphosphatidylethanolamine but not for egg phosphatidylethanolamine, indicating the importance of the structure of the acyl chains in controlling the relative stability of the lamellar and nonlamellar phases in these systems. In contrast to cholesterol, epicholesterol markedly lowers the L alpha----HII phase transition temperature at low mole fraction of sterol. This result demonstrates the importance of the orientation and motional properties of an additive in determining the L alpha----HII transition temperature.  相似文献   

12.
Summary Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry - DMPC Dimyristoylphosphatidylcholine - T c Phase transition temperature  相似文献   

13.
1. 1. The 31P-NMR characteristics of intact rat liver mitochondria, mitoplasts and isolated inner mitochondrial membranes, as well as mitochondrial phosphatidylethanolamine and phosphatidylcholine, have been examined.
2. 2. Rat liver mitochondrial phosphatidylethanolamine hydrated in excess aqueous buffer undergoes a bilayer-to-hexagonal (HII) polymorphic phase transition as the temperature is increased through 10°C, and thus prefers the HII) arrangement at 37°C. Rat liver mitochondrial phosphatidylcholine, on the other hand, adopts the bilayer phase at 37°C.
3. 3. Total inner mitochondrial membrane lipids, dispersed in an excess of aqueous buffer, exhibit 31P-NMR spectra consistent with a bilayer arrangement for the majority of the endogeneous phospholipids; the remainder exhibit spectra consistent with structure allowing isotropic motional averaging. Addition of Ca2+ results in hexagonal (HII) phase formation for a portion of the phospholipids, as well as formation of ‘lipidic particles’ as detected by freeze-fracture techniques.
4. 4. Preparations of inner mitochondrial membrane at 4 and 37°C exhibit 31P-NMR spectra consistent with a bilayer arrangement of the large majority of the endogenous phospholipids which are detected. Approx. 10% of the signal intensity has characteristics indicating isotropic motional averaging processes. Addition of Ca2+ results in an increase in the size of this component, which can become the dominant spectral feature.
5. 5. Intact mitochondria, at 4°C, exhibit 31P-NMR spectra arising from both phospholipid and small water-soluble molecules (ADP, Pi, etc.). The phospholipid spectrum is characteristic of a bilayer arrangement. At 37°C the phospholipids again give spectra consistent with a bilayer; however, the labile nature of these systems is reflected by increased isotropic motion at longer (at least 30 min) incubation times.
6. 6. It is suggested that the uncoupling action of high Ca2+ concentrations on intact mitochondria may be related to a Ca2+-induced disruption of the integrity of the inner mitochondrial phospholipid bilayer. Further, the possibility that non-bilayer lipid structures such as inverted micelles occur in the inner mitochondrial membrane cannot be excluded.
Keywords: 31P-NMR; Inner mitochondrial membrane; Phosphatidylethanolamine; Ca2+; Hexagonal (HII) phase; Lipidic particle  相似文献   

14.
J S Hah  S W Hui  C Y Jung 《Biochemistry》1983,22(20):4763-4769
Proteoliposomes were reconstituted from a Triton extract of human erythrocyte membrane proteins and a mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of varying ratios. With mixtures of egg PC and soybean PE, the protein/lipid ratio of the reconstituted vesicles was maximal at 25% PC and 75% PE, the composition which is known to have a maximum bilayer disruption (highest occurrence of lipidic particles seen by freeze-fracture electron microscopy). With mixtures of 1-palmitoyl-2-oleoyl-PC and dilinoleoyl-PE, which gave vesicles with few isolated lipidic particles at room temperature, the effect was less pronounced. The specific activity of the cytochalasin B (CB) binding protein in the reconstituted vesicles, on the other hand, was increased monotonically up to severalfold as the PC content was increased in the egg PC/soybean PE mixture. A similar increase was observed when soybean PE was partially substituted by dimyristoyl-PC, cholesterol, or transphosphatidylated PE from egg PC. These findings indicate that preexisting defects in the lipid bilayer promote protein incorporation into the bilayer during reconstitution whereas reduction of the bilayer fluidity facilitates the CB binding activity in the reconstituted vesicles.  相似文献   

15.
Trehalose lipids are an important group of glycolipid biosurfasctants mainly produced by rhodococci. Beside their known industrial applications, there is an increasing interest in the use of these biosurfactants as therapeutic agents. We have purified a trehalose lipid from Rhodococcus sp. and made a detailed study of the effect of the glycolipid on the thermotropic and structural properties of phosphatidylethanolamine membranes of different chain length and saturation, using differential scanning calorimetry, small and wide angle X-ray diffraction and infrared spectroscopy. It has been found that trehalose lipid affects the gel to liquid crystalline phase transition of phosphatidylethanolamines, broadening and shifting the transition to lower temperatures. Trehalose lipid does not modify the macroscopic bilayer organization of saturated phosphatidylethanolamines and presents good miscibility both in the gel and the liquid crystalline phases. Infrared experiments evidenced an increase of the hydrocarbon chain conformational disorder and an important dehydrating effect of the interfacial region of the saturated phosphatidylethanolamines. Trehalose lipid, when incorporated into dielaidoylphosphatidylethanolamine, greatly promotes the formation of the inverted hexagonal HII phase. These results support the idea that trehalose lipid incorporates into the phosphatidylethanolamine bilayers and produces structural perturbations which might affect the function of the membrane.  相似文献   

16.
The transient membrane lipid diacylglycerol (DG) is known to modify and destabilize phospholipid bilayers and can lead to the formation of nonbilayer structures. Since cholesterol forms a major fraction of many plasma membranes, we have investigated how it modifies the structural effects of DG on bilayers of egg phosphatidylcholine (PC) and egg phosphatidylethanolamine (PE). We view these systems as modelling the behaviour of local, DG-containing sites in membranes. Using X-ray diffraction, we have characterized the lamellar (L alpha) and inverse hexagonal (HII) structures that these ternary lipid mixtures form in excess aqueous solution. As the DG level increases, the lipid progresses from a single L alpha structure to a mixture of L alpha and HII, and then to a pure HII structure. This allows determination of the DG levels at which the HII transition begins, which we interpret as those levels that destabilize bilayers. In both PC and PE bilayers, the presence of 30 mol% cholesterol reduces the amounts of DG required to destabilize the bilayer structure. The destabilization can be translated into the number of neighbouring lipid molecules that a DG molecule perturbs, and of bilayer areas that it affects. The data show that the presence of cholesterol greatly enhances the perturbing effects of DG. We examine the possible role of DG in enzyme activation and membrane fusion.  相似文献   

17.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane α-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 104-105 Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 °C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

18.
31P-NMR measurements demonstrate that at 37°C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photoreceptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

19.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

20.
1. 1. The application of the 13C-NMR technique to the study of lipid polymorphism is described for various model and biological membranes.
2. 2. The 13C-NMR line-width of various resonances of the lipid molecule are sensitive to the bilayer hexagonal and the bilayer ‘isotropic’ phase transition. The latter transition in some cases is accompanied by the occurrence of lipidic particles as detected by freeze-fracturing. Thus, specific 13C-labeling experiments allow the study of the individual phase behaviour of lipids in mixed lipid systems.
3. 3. In diet experiments using rats, the choline group of phosphatidylcholine present in erythrocyte, endoplasmic and sarcoplasmic reticulum membranes could be specifically 13C-labeled. The 13C line-widths of the resonance from the erythrocyte are typical for a lamellar arrangement of the membrane lipids. In strong contrast, the line-width observed at 37°C for the endoplasmic and sarcoplasmic reticulum membranes is much smaller, typical of the isotropic phases observed in model membranes. In isolated rat liver microsomes and liver slices, the 13C line-width is strongly temperature dependent. At lower temperatures the line-widths strongly increase towards values typical of lipids in a bilayer structure.
Keywords: 13C-NMR; Lipid polymorphism; Endoplasmic reticulum; Sarcoplasmic reticulum; (Rat liver)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号