首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
该研究以抗病品种中国野生毛葡萄‘商 24’和感病品种欧洲葡萄‘红地球’为材料,利用 RT PCR 方法克隆TLP15基因,分别命名为 VqTLP15 和 VvTLP15(GSVIVT01018769001),对其进行生物信息学分析、亚细胞定位、转化拟南芥,并接种不同病原菌观察分析转基因株系的抗性,采用qRT PCR 检测SA 和 JA/Eth信号途径以及调控气孔运动的相关基因表达。结果显示:(1)成功克隆获得 VqTLP15 基因的开放阅读框 (ORF);氨基酸序列比对显示,VqTLP15基因与葡萄基因组网站欧洲葡萄‘黑比诺’VvTLP15 和‘红地球’克隆的 VvTLP15基因的同源性分别为 98.99% 和 99.66%。 (2)亚细胞定位表明,VqTLP15 定位于细胞质。(3)成功获得 VqTLP15 转基因拟南芥株系(L1、 L2、 L3)。(4)接种观察发现:白粉菌处理 7 d后转基因株系对白粉菌的抗性较野生型(Col 0)提高,且其叶片的白粉菌孢子浓度显著低于Col 0;灰霉菌诱导的叶片坏死性损伤在转基因株系(L1、L2 和L3病斑面积>40%的比例分别为 71%、62%和67%)中显著大于 Col 0(43%);接种 PstDC3000后转基因株系叶片的病害表型没有 Col 0 明显,叶片孔径减小程度大于 Col 0,且细菌浓度低于 Col 0。(5)组织化学染色分析表明:白粉菌处理后转基因株系叶片胼胝质沉积、细胞死亡率和 O2-·水平都显著大于 Col 0;灰霉菌处理后转基因株系的细胞死亡率、H2O2和 O2-·水平均高于 Col 0; PstDC3000 处理后细胞死亡率和 O2-·积累水平都高于 Col 0。(6)qRT PCR 检测显示:接种白粉菌后,转基因株系中PR1 和 ICS1 的表达水平均升高,PR1 表达在接种72 h时达到峰值,而 ICS1 在 接种120 h时达到峰值,LOX3 的表达水平逐渐降低,并于接种120 h时降至最低水平,但仍高于 Col 0;接种灰霉菌后,转基因株系中 PR1、NPR1 和 PDF1.2 基因的表达均上调,并在接种 48 h时达到峰值,LOX3 基因的表达水平下降,但仍高于 Col 0;接种 PstDC3000 后,转基因株系中 PR1、PDF1.2 和 NHL10的表达均高于 Col 0,但WRKY53的表达低于Col 0, L1 中 COI1、FRK1、ATPPC2、FLS2、OST1 的表达水平高于 Col 0;接种flg22 或 LPS后, L1 中 COI1基因的表达低于 Col 0,但ATPPC2、FLS2、OST1基因的表达水平高于 Col 0。研究表明,过量表达 VqTLP15 基因降低了对白粉菌和 PstDC3000 的敏感性,增加了对灰霉菌的敏感性。 VqTLP15 基因可能通过介导水杨酸 (SA) 和茉莉酸/乙烯 (JA/Eth) 信号转导途径以及气孔免疫反应来参与植物的抗病防御反应,为葡萄抗病分子育种提供了一个可能的候选基因。  相似文献   

2.
该研究以前期获得的葡萄cDNA全长文库为基础,采用RT-PCR技术克隆了中国野生华东葡萄‘白河-35-1’(Vitis pseudoreticulata‘Baihe-35-1’)相关质体蛋白基因,命名为VpPAP1(GenBank登录号JN624817)。序列分析表明,VpPAP1基因cDNA编码区全长为1 034bp,其中5′-UTR和3′-UTR区域分别为26bp和63bp,开放阅读框为945bp,编码314个氨基酸,分子量为34 169.37Da,等电点为7.76。葡萄叶片接种白粉菌[Uncinula necator(Schw.)Burr.]后,运用实时定量PCR技术分析VpPAP1基因的表达模式,结果表明VpPAP1基因受白粉菌诱导表达,在接种后24h达到峰值。该研究为进一步研究中国野生葡萄脂类相关质体蛋白基因的表达及其在葡萄白粉病互作中的功能分析提供了依据。  相似文献   

3.
ASR(ABA, stress, ripening induced protein)是一类响应植物干旱胁迫的关键转录因子, 在许多植物中已有报道, 然而尚未见香蕉(Musa acuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因, 即MaASR1(登录号为AY628102)。干旱胁迫下, 该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsis thaliana), Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现, 此两转基因株系的叶片变小且变厚; Northern和Western检测结果表明, MaASR1在L14和L38中表达。控水处理后, L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后, 对MaASR1转基因株系中ABA/胁迫响应基因的表达分析, 发现MaASR1可增强转基因株系对ABA信号的敏感度, 但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

4.
采用遗传转化技术获得了整合有拟南芥AtELHYPRP2(EARLI1-LIKE HYBRID PROLINE-RICH PROTEIN 2,AT4G12500)基因的转基因烟草株系,研究了该基因编码蛋白对真菌病原体赤霉菌的抗性及其亚细胞定位特征。以拟南芥Col-0生态型基因组DNA为模板,通过聚合酶链反应扩增AtELHYPRP2基因编码序列,经限制性酶切后连接至pCAMBIA1302载体,构建产生pCAMBIA1302-AtELHYPRP2-GFP融合表达载体。进一步采用农杆菌LBA4404转化烟草叶片外植体,筛选得到转基因烟草植株。RT-PCR、Western blotting印迹分析结果显示,AtELHYPRP2基因在转化体中可以有效表达。激光共聚焦显微观察发现AtELHYPRP2-GFP融合蛋白产生的绿色荧光与碘化丙啶染色后产生的红色荧光能够重合,说明AtELHYPRP2蛋白定位于细胞表面。真菌侵染实验结果显示,组成性表达AtELHYPRP2基因能够增强烟草对赤霉菌的抗性,被侵染部位有明显的H2O2积累。转基因烟草植株中PR1基因的本底表达水平比野生型高,PR1和PR5基因的系统表达水平比野生型高,说明AtELHYPRP2基因可能在SAR反应中具有一定的作用。  相似文献   

5.
为了明确棉花ERF-B3亚族转录因子基因GhB301在烟草异位表达后(抗枯萎病中)的功能,该研究以过表达GhB301基因烟草和野生型烟草为材料,采用枯萎病菌孢子悬浮液接菌方法,分析病原菌侵染前后防御酶活性变化以及防卫相关基因的表达变化与抗病性的关系。结果显示:(1)棉花枯萎病菌处理15d后,2个转基因株系烟草叶片黄化程度与野生型相比较轻。(2)棉花枯萎病菌处理后,过表达GhB301转基因烟草和野生型烟草叶片过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)的活性较未接菌对照显著提高,并且酶活峰值出现均早于野生型材料;转基因材料叶片的POD、PAL、PPO活性均在处理3d后达到峰值,而野生型材料叶片的POD、PAL活性在处理5d后才达到峰值。(3)接种棉花枯萎病菌后活性氧相关基因、乙烯(ET)/茉莉酸(JA)途径相关基因、病程相关基因的表达量在转基因株系OE1和OE2中均受到明显影响。研究推测,GhB301在烟草中的异位表达激活了防卫相关基因的表达,提高了防御酶的活性,从而增强了烟草对枯萎病菌的抗性。  相似文献   

6.
采用实时荧光定量RT-PCR和Northern blotting技术检测了野生型拟南芥中CBP60g基因对丁香假单胞菌和非生物胁迫的响应,并对丁香假单胞菌接种后,野生型拟南芥、cbp60g-1突变体和CBP60g过表达转基因植物中抗逆相关基因的表达变化进行检测。结果显示:(1)在野生型拟南芥中CBP60g基因的表达能被丁香假单胞菌、高盐、冷和机械损伤所诱导。(2)经丁香假单胞菌诱导后病程相关基因PR5和AIG1的表达在过表达转基因植物中明显高于野生型。(3)受干旱和ABA诱导的AtMYB2基因的表达在过表达转基因植物中也高于野生型。研究表明,CBP60g同时参与了拟南芥对生物和非生物胁迫响应。  相似文献   

7.
ASR(ABA,stress,ripening induced protein)是一类响应植物干旱胁迫的关键转录因子。在许多植物中已有报道,然而尚未见香蕉(Musa acuminata)VPASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个AS尺基因,即MaASRl(登录号为AY628102)。干旱胁迫下,该基因在叶片中的表达量高于根部。将MaASRl转入拟南芥∽rabidopsisthaliana),Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现,此两转基因株系的叶片变小且变厚Northern和Western检测结果表明,MaASR1在L14和L38中表达。控水处理后,L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后,对MaASR1转基因株系中ABA/胁迫响应基因的表达分析,发现MaASR7可增强转基因株系对ABA信号的敏感度,但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

8.
为了研究中国野生毛葡萄(Vitis quinquangularis Rehd.)‘丹凤-2’3个芪合酶基因的表达与功能,该研究采用同源克隆技术分离了毛葡萄‘丹凤-2’3个芪合酶基因VqSTS21、VqSTS30和VqSTS32(GenBank登录号分别为JQ868677、JQ868668和JQ868666),3个基因的cDNA全长均为1 179bp,编码392个氨基酸。以抗葡萄白粉病(Uncinula necator)的毛葡萄‘丹凤-2’和不抗病的欧洲葡萄‘赤霞珠’为材料分别进行接种白粉菌和ABA、SA、MeJA、高温、低温和高盐胁迫处理,利用实时定量PCR检测这3个基因在胁迫处理下的表达情况;同时利用农杆菌介导法将这3个基因分别转入模式植物烟草中,检测这3个基因在烟草中的表达产物,分析比较这3个基因的表达功能。结果显示:在2个供试材料中,葡萄白粉菌胁迫下芪合成酶VqSTS32诱导表达量高于VqSTS21和VqSTS30;在非生物胁迫处理下,芪合酶基因VqSTS32对高温处理反应最敏感。采用高效液相色谱分析检测转3个基因烟草的结果显示,转VqSTS32基因烟草比转VqSTS30基因烟草植株中白藜芦醇的累积量高。研究表明,3个基因中VqSTS32具有较高的抗葡萄白粉菌特性并能在转基因烟草中表达出较高的反式云杉新苷产物,这为进一步利用VqSTS32转目的植物葡萄基因研究提供了依据。  相似文献   

9.
利用RNA干涉技术研究水稻锌指蛋白基因O_sBBX22的生物学功能,为探讨O_sBBX22响应热胁迫的机制、培育抗逆水稻、减轻高温对水稻的损害奠定基础。通过观察转基因突变体植株和野生型植株在热胁迫下的表型差异,分析O_sBBX22生物学功能;采用半定量PCR和荧光定量PCR检测O_sBBX22以及相关的热激转录因子(HSF)、热激蛋白(HSP)基因在转基因突变体株系中的表达水平;通过原位组织化学检测过氧化氢在野生型、转基因突变体株系叶片中的定位和积累情况。结果表明,在0~5 h热胁迫条件下,与野生型株系相比,O_sBBX22的表达在转基因突变体植株中明显下调;而野生型O_sBBX22受热信号诱导,随着热激时间的增加,O_sBBX22的表达量呈先上升后下降的趋势,且在热激1 h时表达量最高。相关的HSF和HSP也受热信号诱导,野生型株系中的HSFA2a、HSFA7、HSP16.9和HSP100表达量均比转基因突变体株系高,且在热激1 h时,HSFA2a、HSP16.9和HSP100表达量最高,而HSFA7在热激3 h时表达最高。热胁迫3 h,经DAB染色,转基因突变体株系叶片上出现的红褐色斑点主要集中于叶脉和受损伤部位,且明显多于野生型。锌指蛋白基因O_sBBX22在水稻苗期热胁迫应答中具有重要的作用,野生型株系抗热能力明显高于O_sBBX22抑制表达转基因株系;HSFA2a、HSFA7、HSP16.9和HSP100可能参与了O_sBBX22介导的水稻耐热调控。  相似文献   

10.
采用同源序列克隆法,从番茄中克隆了多蛋白桥梁因子基因LeMBF1,该基因包含一个完整的420 bp的开放阅读框,编码139个氨基酸,具有MBF1保守结构域.LeMBF1氨基酸序列与马铃薯StMBF1、烟草NtMBF1和葡萄VvMBF1的氨基酸序列相似度分别是99.3%、91.4%和84.2%.为了研究番茄多蛋白桥梁因子LeMBF1在植物抗病性中的作用,以LeMBF1超表达转基因番茄和野生型番茄为材料,对其进行接种病原细菌Pst.DC3000和尖孢镰刀菌Fusarium.oxysporum的生物胁迫实验.抗菌表型分析发现,LeMBF1超表达转基因番茄叶片上的菌斑数明显少于对照植株;实时定量PCR分析表明,LeMBF1超表达番茄植株中防卫基因PR1、PR6的表达水平明显增强.由此可见,LeMBF1可能通过激活部分PRs基因的表达提高了植物的抗病性.  相似文献   

11.
本工作采用酿酒酵母细胞表达载体pESC和植物细胞表达载体pPZP211分析了拟南芥AZI1基因对真菌的抗性功能。半乳糖诱导产生的AZI1蛋白可以使酵母细胞的生长能力明显降低。DAB和台酚蓝染色结果显示用蒜薹灰霉菌孢子处理Col-0野生型植株叶片后被侵染部位只能产生少量H2O2,病原体可以扩散,而AZI1基因过表达植株叶片在侵染部位有大量H2O2产生,着色较深,表明转化体能够以局部细胞的死亡来阻止病原体侵染周围的细胞。在Col-0野生型植株中,AZI1基因的表达受外源水杨酸诱导,24h后达到峰值。以上结果说明AZI1基因在拟南芥对生物胁迫因素的应答过程中具有重要作用。  相似文献   

12.
以胆碱脱氢酶基因对小黑杨花粉植株的遗传转化   总被引:3,自引:0,他引:3  
以小黑杨(Populus simoniixP.nigra)花粉植株叶片为外植体,用根癌农杆菌介导法将胆碱脱氢酶基因(betA)导入其中,将获得的4株卡那霉素抗性转基因株系进行PCR检测,结果均为阳性。用荧光定量PCR对转基因株系的betA基因转录结果检测表明,4个转基因株系均已表达外源基因,但表达量有差异。对获得的4株转基因株系及对照进行NaCl胁迫处理,当NaCl浓度为0.55%时,非转基因小黑杨花粉植株生根率为0,转基因株系生根率为80%~100%;在NaCl为0.70%~0.80%时,则转基因株系生根率也为0。4个转基因株系的甜菜碱含量显著高于未转基因对照,说明抛融基因的导入提高了转基因株系的耐盐性。  相似文献   

13.
Sec14蛋白家族在植物中参与磷酸代谢、信号转导等基本生命过程。从感白粉病小麦品种京411中克隆到一个磷脂酰肌醇转运蛋白基因,其开放阅读框为1 212 bp,编码403个氨基酸,与二穗短柄草中磷脂酰肌醇转运蛋白PITP3(XP_010236107.1)有80.45%的同源性,含有SEC14保守结构域,命名为TaSec14。接种白粉菌后,TaSec14在京411及其近等基因系BJ-1中表达趋势一致,表达量均高于抗病小麦品种Brock。利用病毒介导的基因沉默技术敲减京411中的TaSec14基因后,BSMV∶TaSec14叶片上白粉菌孢子的成功侵染率低于GKP Buffer对照组,而畸形率高于对照组,表明降低TaSec14基因的表达能在一定程度上提高感病小麦京411对白粉菌的抗性。推测TaSec14基因可能在小麦与白粉菌互作过程具有调控作用。  相似文献   

14.
转基因大麦中gfp基因的染色体位置及其表达   总被引:10,自引:0,他引:10  
通过对大麦小孢子进行基因枪轰击获得4株转绿色荧光蛋白基因(gfp)的植株(A、C、D、E),以gfp基因为探针进行荧光原位杂交(FISH)研究转化植株中转基因插入位置和基因表达。4个株系在染色体7L(5HL)的不同位置都有一个插入点,而E株系在染色体5S(7HS)还有第2个插入点。所有的转基因T0代植株都是半合子并在T1、T2代发生分离。D株系GFP未表达,但FISH和PCR分析表明gfp基因已成功插入其染色体。各株系在根尖和花粉中的GFP表达水平不同:C株系在花粉表达强而在根尖表达中等;A株系在花粉中等表达而在根尖表达较淡;E株系则在根尖高表达,花粉中等表达。A和C株系在根尖和花粉的GFP分离都表现单位点特性,而E株系的根尖分离表现重叠作用(15:1)特征,但在花粉中表达GFP的频率低。PCR结果和3个分离株系的根尖表达结果一致。D和E株系的GFP表达不正常可能和加基因插入位置或基因的结构有关。  相似文献   

15.
我们曾报道表达不可翻译PVY~N CP基因的转基因烟草抗病性是由RNA介导的,其抗病性类似于转录后的基因沉默(PTGS)。本研究以这类不同抗性的Tn代转基因烟草植株为材料,对自交后的T1代转基因植株的遗传和抗病性进行了分析,并选取部分T_1代抗病株系自交留种。对T_2代RNA介导抗病性转基因植株进行了分子分析和一系列抗病性研究。结果表明,含1-2个转基因拷贝的T_0代感病植株,在T_1代中的Km抗性分离符合单位点插入的3∶1的遗传规律;含3个或3个以上转基因拷贝的T_0代中抗或高抗植株,在T_1代中的Km抗性分离符合多位点插入的15∶1或63∶1的遗传规律。大多数T_1、T_2代转基因植株的抗病性与转基因拷贝数成正相关,转基因在T_1、T_2代植株中能够转录表达,且转基因植株之间转基因mRNA在细胞质中的积累水平与转基因植株的抗病性成负相关。转基因植株的抗病性能够在T_1、T_2代中遗传,且T_2代转基因植株的抗病性具有以下特征:1)既抗病毒粒体又抗病毒RNA的侵染,且这种抗病性不受接种物剂量的影响;2)抗病谱较窄,只对PVY的某些株系具有高度抗病性;3)与传毒方式无关,既抗摩擦接种又抗带毒蚜虫接种;4)与植株的发育阶段没有关系。  相似文献   

16.
为探究百合几丁质酶在灰霉病抗性中的功能,该研究以高抗品种东方百合‘索邦’(Lilium oriental hybrid ‘Sorbonne’)接种灰霉菌12 h后的叶片为材料,采用反转录PCR的方法克隆到1个几丁质酶基因成员,并命名为LoChi2(NCBI登录号为MW310626),通过生物信息学手段预测分析了目标基因推导的编码蛋白的结构和功能,并采用qRT-PCR分析灰霉菌侵染以及SA/JA处理条件下LoChi2基因在百合中的表达特征。结果显示:(1)LoChi2基因完整的开放阅读框序列长度为915 bp,编码304个氨基酸,预测的蛋白分子质量为32.52 kD,理论等电点为4.16。(2)蛋白结构和系统进化分析显示,LoChi2属于糖苷水解酶18家族Ⅲ类成员,含有保守的GH18 narbonin催化结构域、跨膜结构域以及信号肽、糖基化和磷酸化位点,预测为疏水的分泌蛋白,且定位于细胞外;多序列比对结果表明,LoChi2基因序列与麝香百合、菠萝和梅花中的Chi2基因具有较高的相似性。(3)qRT-PCR分析发现,LoChi2基因的表达水平与品种间的抗病性呈正相关,其中在高抗品种‘索邦’中的表达水平显著高于中感品种‘雷山三号’(L.×formolongi‘Raizan 3’)和高感品种‘穿梭’(L. asiatic hybrid ‘Tresor’);外源水杨酸(SA)和茉莉酸(JA)可诱导LoChi2基因的表达。研究表明,LoChi2基因是参与灰霉菌防御反应的关键抗病基因,且该基因可能在JA和SA抗病信号通路中扮演重要角色;推测LoChi2基因在百合抗灰霉病育种方面具有广阔的应用前景,将成为百合抗灰霉病转基因育种中新的候选基因。  相似文献   

17.
表达PVY和PLRV双价外壳蛋白基因马铃薯的抗病性研究   总被引:5,自引:0,他引:5  
表达马铃薯Y病毒(PVY)和马铃薯卷叶病毒(PLRV)双价外壳蛋白基因的马铃薯(Solanum tubero-sum L.)栽培品种“Favorita”和“虎头”,经摩擦接种PVY和用桃蚜接种PLRV后,观察症状并用ELISA测定病毒滴度。结果表明,两个品种转双价CP基因的各株系,接种病毒后表现无症状或症状轻微,其中PVY和PLRV平均滴度均较不转基因对照植株低。不同品种对PVY和PLRV的抗性比较表明,转双价CP基因的“Favorita”对PVY抗性较明显,而转双价CP基因的“虎头”则对PLRV抗性较对PVY抗性明显。不同转基因株系抗病毒水平不同。“Favorita”9个转双价CP基因株系中有6个株系PVY滴度较未转基因对照降低52.5%~90.0%,而“虎头”7个转双价CP基因株系中有4个株系PLRV含量较对照降低53.0%~98.0%。在抗性株系中还出现一些抗1种病毒或抗2种病毒的抗性较强的单株。  相似文献   

18.
利用瞬间表达技术分析小麦抗病相关基因的功能   总被引:8,自引:0,他引:8  
采用瞬间表达技术分析了TaTBL、TaPK1和TaTST等3个抗病相关基因的功能。首先将这3个小麦抗病相关基因构建入高效表达载体,然后使用基因枪将目标基因和GUS基因载体同时导入到感白粉病小麦品种离体叶片表皮细胞中,用GUS基因标记阳性转化细胞。转化后接种白粉菌孢子,48h后观察转化阳性表皮细胞,研究抗病相关基因表达对白粉菌入侵及吸器形成产生的影响。结果表明,这3个基因在感病小麦品种叶片表皮细胞中的瞬间表达,对白粉菌侵入和吸器形成均有部分抑制作用,在一定程度上增强了表达细胞对白粉菌的抗性。  相似文献   

19.
以黄瓜品种‘长春密刺’幼苗为材料,研究了亚精氨(Spd)诱导黄瓜幼苗对白粉病的抗性,并测定Spd处理和白粉菌接种对黄瓜叶片4种防御酶活性及3种防卫基因表达的影响。结果显示:(1)0.2~1.0mmol.L-1 Spd对黄瓜幼苗白粉病抗性均有不同程度的诱抗效果,并以0.8mmol.L-1 Spd处理效果最明显,诱导效率可达55.3%。(2)喷施Spd或接种白粉菌均可提高黄瓜叶片过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、几丁质酶和β-1,3-葡聚糖酶的活性,且诱导并接种处理的植株叶片上述酶活性均比只诱导不接种处理的上升速度更快;同时,Spd处理和接种白粉菌可以提高植株叶片中POX、PAL、PR-1a基因的表达量。研究表明,Spd处理可以诱导防卫基因表达的增强,提高防御酶活性,显著降低病情指数,增强黄瓜幼苗对白粉病的抗性。  相似文献   

20.
卡那霉素在转基因芥菜中的应用   总被引:5,自引:1,他引:4  
赵爽  雷建军  陈国菊  曹必好 《遗传》2008,30(4):501-507
为了找出芥菜 (Brassica juncea Coss.) 遗传转化中最佳的卡那霉素(Kan)筛选浓度, 将芥菜的子叶接种于含有不同浓度Kan的分化培养基中, 当Kan浓度达到 30 mg/L时, 外植体的分化完全受到抑制。将芥菜种子播种于含有不同浓度Kan的培养基中, 当Kan浓度达到200 mg/L时, 长出的幼苗完全白化; 利用叶片涂抹方法, 将不同浓度的Kan涂抹于田间生长的植株叶片上, 当Kan浓度达到200 mg/L时, 被处理的叶片完全变白。为了对转基因芥菜后代中外源基因的分离情况进行遗传学分析, 分别用200 mg/L的Kan处理以npt-Ⅱ基因为选择标记基因的转基因芥菜的种子和转基因芥菜后代植株的叶片, 利用χ2测验分析试验结果, 4个含有单拷贝外源基因的转基因株系后代, 对Kan的抗感分离都符合3︰1的分离规律; 而2个含有双拷贝外源基因的转基因株系, 其中一个对Kan的抗感分离符合3︰1而不符合15︰1, 另一个对Kan的抗感分离既符合3︰1也符合 15︰1, 双拷贝外源基因在转基因芥菜中的整合方式有待进一步的研究。最后, 用PCR分析证实了该方法的准确性, 因此, 利用Kan对转基因芥菜后代进行筛选是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号