首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carotenoid and abscisic acid (ABA) levels were determined in endosperm, embryos and seedlings of wild-type and viviparous (vp) mutants ofZea mays L. Carotenoid concentrations were determined by absorption spectrometry following purification by high-performance liquid chromatography and ABA concentrations by combined gas chromatography-mass spectrometry. Lutein and zeaxanthin were the terminal carotenoids in wild-type tissue. The carotenoid profiles ofvp-1 andvp-8 tissue were similar to that of the wild type; invp-2, vp-5, vp-7 andvp-9 carotenogenesis was blocked at early stages so that xanthophylls were absent. Except forvp-1, where the ABA content was similar to the wild type, the ABA content ofvp embryos was substantially reduced, to 6–16% of the corresponding wild type. Thus, the absence of xanthophylls was associated with reduced ABA content, which was in turn correlated with vivipary. Kernels ofvp-8 had a reduced ABA content although xanthophylls were present. Seedlings of carotenoid-deficient mutants rescued from viviparous kernels contained less ABA than did wild-type seedlings grown in the same way. Furthermore, the ABA concentration of such seedlings did not increase in response to water deficit. Conversely,vp-1 seedlings contained normal levels of carotenoids and ABA. Carotenoid-deficient seedlings did not contain appreciable amounts of chlorophyll so that chloroplast development was not normal. Thus ABA-deficiency could be associated with abnormal plastid development rather than the absence of carotenoids per se.Abbreviations ABA abscisic acid - DAP days after pollination - i.d. internal diameter - FW fresh weight - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - MS mass spectrometry - vp viviparous  相似文献   

2.
3.
In maize vivipary, the precocious germination of the seed while still attached to the ear, is the diagnostic phenotype of mutants, which are impaired in the biosynthesis or response to abscisic acid (ABA). Of the 15 genes so far described, 12 control specific steps in ABA biosynthesis, two mediate hormone response and one still has an undefined role. We have analyzed a collection of 25 independent vp isolates with the aim of determining the degree of mutational saturation that has so far been reached. Of the 25 viviparous mutants complementation tested, 22 correspond to known loci: six are allelic to vp1, another six to vp5, one to vp7, two to vp9, six to vp10 and one to w3. The remaining three represent genes not previously identified. All mutants so far tested except rea show a decrease in ABA content. As to the only two mutants (vp1 and rea) whose endogenous ABA content is not impaired, the reduction in sensitivity of the double mutant compared to the single ones suggests that the two genes control separate pathways in the ABA signal transduction. Some of the mutants in this collection have a characteristic incomplete germination that allows the embryo of the mature dry seed to resume germination. By exploiting this feature it is possible to infer, through a germination test, whether the mutant has been impaired in the acquisition of desiccation tolerance. This information provides the starting point for the dissection of the genetic basis of desiccation tolerance.  相似文献   

4.
Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses.  相似文献   

5.
6.
A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.  相似文献   

7.
8.
To determine whether abscisic acid (ABA) accumulation in endosperms of water-limited maize (Zea mays L.) plants is from synthesis in maternal plant organs or from intraendosperm synthesis, plants heterozygous for viviparous (vp) genes were self-pollinated to create endosperm genotypes capable (+/−/−; +/+/−; +/+/+) or incapable (−/−/−) of carotenoid and ABA synthesis. The mutants vp2, vp5, and vp7, each in W22 inbred background, were utilized. Both in wild-type endosperms capable of ABA synthesis and in mutants incapable of ABA synthesis, ABA concentrations at 15 days after pollination were substantially increased in response to plant water deficit. We conclude that ABA synthesis in maternal organs was the source of ABA that accumulated in endosperms in response to plant water deficit.  相似文献   

9.
In Arabidopsis thaliana, seed development in recombinants of the ABA-deficient aba mutant with the ABA response mutants abi1 or abi3 is compared to wild type and the monogenic parents. Aberrant seed development occurred in the aba,abi3 recombinant and was normal in aba,abi1, abi3 and aba,abi1 seeds. Embryos of the recombinant aba,abi3 seeds maintained the green color until maturity, the seeds kept a high water content, did not form the late abundant 2S and 12S storage proteins, were desiccation intolerant, and often showed viviparous germination. Application of ABA, and particularly of an ABA analog, to the roots of plants during seed development partially alleviated the aberrant phenotype. Seeds of aba,abi3 were normal when they developed on a mother plant heterozygous for Aba. In contrast to seed development, the induction of dormancy was blocked in all monogenic mutants and recombinants. Dormancy was only induced by embryonic ABA; it could not be increased by maternal ABA or ABA applied to the mother plant. It is concluded that endogenous ABA has at least two different effects in developing seeds. The nature of these responses and of the ABA response system is discussed.  相似文献   

10.
Leafy Cotyledon Mutants of Arabidopsis   总被引:11,自引:1,他引:10       下载免费PDF全文
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.  相似文献   

11.
Abscisic acid (ABA) is a sesquiterpene compound (C15) derived from C40 carotenoids. The immediate carotenoid precursors for ABA biosynthesis, 9- cis -violaxanthin and 9'- cis -neoxanthin, are produced from β -carotene by a series of hydroxylation, epoxidation, and isomerization reactions. Carotenoid hydroxylase deficient mutants contain severely reduced levels of violaxanthin and neoxanthin ( < 20% of wild type level) and provide a unique system to correlate carotenoid substrate availability and ABA production in photosynthetic tissues under non-stressed conditions. Quantitative measurements indicated that ABA levels in the carotenoid hydroxylase mutants are reduced nearly 50% compared to the wild type plants under non-stressed conditions. When drought-stressed, wild type plants showed up to a 17-fold increase in ABA levels, while ABA levels in the carotenoid hydroxylase mutants were only increased 6- to 7-fold (25% of wild type drought-stressed ABA levels). Expression of AtNCED3 ( Arabidopsis thaliana nine- cis -epoxycarotenoid dioxygenase 3, the rate-limiting activity for ABA biosynthesis) was induced in the carotenoid hydroxylase mutants, but to a lesser extent than the 40-fold increase in wild type plants. Therefore, the reduced ABA accumulation in response to drought-stress is at least partially due to the attenuated increase in AtNCED3 gene expression in the carotenoid hydroxylase mutants. The remaining violaxanthin and neoxanthin in the carotenoid hydroxylase mutants can not be converted into ABA, indicating that there is probably a separate pool of violaxanthin and neoxanthin that is not accessible to the cleavage enzymes, because it is sequestered in the light-harvesting complexes.  相似文献   

12.
13.
In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.  相似文献   

14.
Mutant lines of Arabidopsis thaliana (L.) Heynh., which are characterized by symptoms of withering and the absence of seed dormancy, showed much lower levels of endogenous abscisic acid (ABA) in developing seeds and fruits (siliquae) than the wild type. Reciprocal crosses of wild type and ABA-deficient mutants showed a dual origin of ABA in developing seeds. The genotype of the mother plant regulated a sharp rise in ABA content half-way seed development (maternal ABA). The genotype of the embryo and endosperm was responsible for a second ABA fraction (embryonic ABA), which reached much lower levels, but persisted for some time after the maximum in maternal ABA. The onset of dormancy correlated well with the presence of the embryonic ABA fraction and not with the maternal ABA. Dormancy developed in both the absence and presence of maternal ABA in the seeds. In this respect maternal ABA resembled exogenously applied ABA which did not induce dormancy in ABA-deficient seeds. However, both maternal and applied ABA stimulated the formation of a mucilage layer around the testa, which could be observed during imbibition of the mature seeds. In the mature state, ABA-deficient seeds germinated in the siliquae on the plant, but only when the atmosphere surrounding the plant was kept at high relative humidity. In younger stages germination in siliquae occurred after isolation from the plants and incubation on wet filter paper. Therefore, it seems that limited access to water is the primary trigger for the developmental arrest in these seeds.  相似文献   

15.
16.
Abscisic acid (ABA) insensitive mutants of Arabidopsis thaliana (L.) Heynh. were isolated by selecting plants which grew well on a medium containing 10 μ M ABA. From the progeny of approximately 3500 mutagen-treated seeds, five mutants of at least three different loci were isolated. Three mutants were characterized, moreover, by a reduced seed dormancy and by symptoms of withering, indicating disturbed water relations and, therefore, resembled phenotypically the ABA-deficient mutants we described earlier in this species. Two mutants showed in addition only a reduction of seed dormancy. Compared to wild type, all mutants showed similar or increased levels of endogenous ABA in developing seeds and fruits (siliquae). The role of the different genes involved is discussed in relation to the mechanism of ABA action.  相似文献   

17.
The Arabidopsis aldehyde oxidase 3 (AAO3) gene encodes an enzyme that catalyzes the final step of ABA biosynthesis. AAO3 has been shown to be the major AAO involved in ABA biosynthesis in leaves under stress conditions. On the other hand, less severe phenotypes of the aao3 seeds suggested that other AAO(s) might also be involved in ABA biosynthesis in seeds. Among four AAOs (AAO1-AAO4), AAO1 and AAO4 were the AAO expressed most abundantly in dry seeds and developing siliques, respectively. Unlike aao3, single loss-of-function mutants for AAO1 and AAO4 (aao1 and aao4), failed to show significant changes in endogenous ABA levels in seeds when compared with wild type. While aao3 seed germination was resistant to the gibberellin biosynthesis inhibitor, uniconazole, aao1 and aao4 showed no resistance and were similar to wild type. These results indicate that AAO3, but not AAO1 or AAO4, plays an important role in ABA biosynthesis in seeds. Mutations of AAO1 or AAO4 in the aao3 mutant background enhanced ABA deficiency in seeds, demonstrating that both gene products contribute partially to ABA biosynthesis in the aao3 mutant background. However, considering the enzymatic characters of AAO1 and AAO4, their involvement in ABA biosynthesis in wild-type seeds may be negligible. We have concluded that AAO3 is the AAO that plays a major role in ABA biosynthesis in Arabidopsis seeds as well as in leaves.  相似文献   

18.
Regulation of programmed cell death in maize endosperm by abscisic acid   总被引:26,自引:0,他引:26  
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2–4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.  相似文献   

19.
Wild type and three abscisic acid (ABA)-insensitive mutants of Arabidopsis (ABI1, ABI2, and ABI3) were compared for their ability to respond to ABA for a variety of ABA-inducible responses throughout the life cycle of the plants. The responses tested included effects on seedling growth, proline accumulation in seedlings, ABA-regulated protein synthesis in plantlets, and seed storage protein and lipid synthesis and accumulation. The abi1 and abi2 mutants showed reduced sensitivity to ABA for inhibition of seedling growth, induction of proline accumulation, and alterations in protein synthesis patterns during vegetative growth, but had wild type levels of storage reserves. In contrast, the abi3 mutant had wild type sensitivity for induction of proline accumulation and was only slightly less responsive to ABA with respect to effects on seedling growth and changes in patterns of protein synthesis. The major effects of this mutation were on seed development. Seeds of the abi3 mutant had two-thirds of the wild type level of storage protein and one-third the wild type level of eicosenoic acid, the major fatty acid component of storage lipids in wild type seeds. These results show that none of the abi mutants is insensitive for all ABA-inducible responses and that the abi3 effects are not seed-specific. Comparison of the degree of ABA sensitivity of monogenic mutant lines with that of digenic mutant lines carrying pairwise combinations of the abi mutations suggests that ABA responses in mature seeds are controlled by at least two parallel pathways.  相似文献   

20.
The phytohormone ABA regulates seed germination and stress responses. The identification of clade A protein phosphatase type 2C (PP2C)-interacting proteins PYRABACTIN RESISTANCE 1 (PYR1)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) and PYR1-LIKEs (PYLs) as ABA receptors has been a major advance in understanding this process. Here, our aim was to identify additional ABA response loci by suppressor screening of the jasmonate (JA)-insensitive coronatine insensitive 1-16 (coi1-16) mutant using its ABA-hypersensitive phenotype. The identification and genetic characterization of Coi1-16 Resistant to ABA (CRA) loci revealed several unknown and three previously known abi mutants (abi1, abi3 and abi4), thus providing proof-of-concept evidence for this study. The synergistic effect of ABA and JA on seed germination and cotyledon expansion was analyzed in depth and the roles of cra5 coi1-16, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 in ABA signaling during seed germination and stress responses were functionally characterized. The cra5 coi1-16 mutant showed resistance to ABA, paclobutrazol, and abiotic stresses during germination and early developmental stages. Furthermore, the cra5 coi1-16 mutation was mapped to the short arm of chromosome V and mutants exhibited differential expression of ABA-responsive genes, suggesting that CRA5 may function as a positive regulator of ABA signaling. Interestingly, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 mutants display similar ABA- and abiotic stress-insensitive phenotypes during seed germination and seedling establishment. Taken together, our results demonstrate a key role for CRA genes in regulating the onset of seed germination by ABA, and highlight how cra mutants can be used as powerful tools to analyze novel molecular components of ABA signaling in seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号