首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to many stresses and pathologic states, including different models of nervous system injury, cells synthesize a variety of proteins, most notably the inducible 72 kDa heat shock protein 70 (Hsp70), which plays important roles in maintaining cellular integrity and viability. We report here that cultured astrocytes from rat diencephalon express high levels of Hsp70 upon exposure to elevated temperatures, and are less vulnerable to a subsequent oxidative stress. Complex oxidative stress was induced by exposure of astrocytes to an aqueous extract of tobacco smoke. This resulted in both glutathione and ATP depletion, along with cell death that proceeded through a necrotic pathway. Pretreatment of cultures with the glutathione replenishing agent, N-acetyl-L-cysteine, prevented glutathione and ATP loss as well as necrotic cell death. Thermal stress also protected astrocytes from necrotic cell death but without affecting glutathione or ATP levels. We propose that heat shock protects astrocytes from necrosis induced by oxidative stress, probably as a result of Hsp70 synthesis, through an antioxidant-ATP independent mechanism. As Hsp70 may transfer from glial to neuronal cells, its synthesis by astrocytes may represent an important survival mechanism by which astrocytes protect neurons against oxidative-mediated cell death.  相似文献   

2.
To further elucidate the role of the constitutive heat shock protein-70 (HSC70) as a chaperone for the synthesis of myelin basic protein (MBP), HSC70 content was decreased in oligodendrocyte precursor cells prior to MBP expression either by transfection with an antisense oligonucleotide specific for HSC70, or by exposure to low levels of quercetin, a bioflavonoid known to decrease synthesis of HSC70. As these cells underwent differentiation in vitro, antisense treatment decreased HSC70 levels to 66% of controls. At the same time, a sharp induction resulted in the stress-inducible heat shock protein-70 (HSP70). Levels of two other stress proteins increased as well, namely, the 25-kDa heat shock protein (HSP25) and the 78-kDa glucose regulated protein (GRP78). MBP synthesis proceeded over a normal time course, but at only 50% of control values. As HSC70 content returned to normal, MBP synthesis was also restored to normal levels. Quercetin reduced the expression of HSC70 to an even greater extent than transfection, and prevented the induction of HSP70. In contrast to antisense-treated cells, MBP synthesis was essentially blocked in quercetin-treated cells even though levels of HSP25 and GRP78 increased. Taken together, these observations (a) indicate that HSP70 partially compensates for decreased chaperoning of nascent MBP by HSC70 (HSC70 and HSP70 are closely related and perform similar functions); (b) preclude the involvement of HSP25 and GRP78 in MBP synthesis; and (c) emphasize the requirement of HSC70 for optimal synthesis of MBP.  相似文献   

3.
We have previously shown that heat shock protein 70 (HSP70) markedly inhibits H2O2-induced apoptosis in mouse C2C12 myogenic cells by reducing the release of Smac. However, the molecular mechanism by which HSP70 interferes with Smac release during oxidative stress-induced apoptosis is not understood. In the current study, we showed that HSP70 increased the stability of Bcl-2 during oxidative stress. An antisense phosphorothioate oligonucleotide against Bcl-2 caused selective inhibition of Bcl-2 protein expression induced by HSP70 and significantly attenuated HSP70-mediated cell protection against H2O2-induced release of Smac and apoptosis. Taken together, our results indicate that there are important relationships among HSP70, Bcl-2, release of Smac, and induction of apoptosis by oxidative stress.  相似文献   

4.
Zhang  Shuo  Liu  Weijian  Wang  Peng  Hu  Binwu  Lv  Xiao  Chen  Songfeng  Wang  Baichuan  Shao  Zengwu 《Molecular and cellular biochemistry》2021,476(5):1979-1994

The endogenous repair failure of degenerated intervertebral disk (IVD) is highly related to the exhaustion of nucleus pulposus stem cells (NPSCs). Excessive oxidative stress could induce apoptosis and senescence of NPSCs, thus, declining the quantity and quality of NPSCs. Heat shock protein 70 (HSP70) is a family of cytoprotective and antioxidative proteins. However, there is no report on the protective effects of HSP70 on oxidative stress-induced NPSC impairments and underlying mechanisms. In the present study, we treated NPSCs with tert-butyl hydroperoxide (t-BHP) in vitro to simulate an oxidative stress condition. HSP70 inducer TRC051384 was used to evaluate the cytoprotective effects of HSP70. The results suggested that HSP70 impeded t-BHP-mediated cell viability loss and protected the ultrastructure of NPSCs. Moreover, t-BHP could induce mitochondrial apoptosis and p53/p21-mediated senescence of NPSCs, both of which were significantly inhibited in HSP70 activation groups. Excessive oxidative stress and mitochondrial dysfunction reinforced each other and contributed to the cellular damage processes. HSP70 decreased reactive oxygen species (ROS) production, rescued mitochondrial membrane potential (MMP) collapse, and blocked ATP depletion. Finally, our data showed that HSP70 downregulated the JNK/c-Jun pathway. Taken together, activation of HSP70 could protect against t-BHP-induced NPSC apoptosis and senescence, thus, improving the quantity and quality of NPSCs. Therefore, HSP70 may be a promising therapeutic target for IVD degeneration.

  相似文献   

5.
Perturbation of oxidant/antioxidant cellular balance, induced by cellular metabolism and by exogenous sources, causes deleterious effects to proteins, lipids, and nucleic acids, leading to a condition named "oxidative stress" that is involved in several diseases, such as cancer, ischemia-reperfusion injury, and neurodegenerative disorders. Among the exogenous agents, both H(2)O(2) and hyperthermia have been implicated in oxidative stress promotion linked with the activation of apoptotic or necrotic mechanisms of cell death. The goal of this work was to better understand the involvement of some stress-related proteins in adaptive responses mounted by human fibroblasts versus the oxidative stress differently induced by 42 degrees C hyperthermia or H(2)O(2.) The research was developed, switching off inducible nitric oxide synthase (iNOS) expression through antisense oligonucleotide transfection by studying the possible coregulation in the expression of HSP32 (also named HO-1), HSP70, and iNOS and their involvement in the induction of DNA damage. Several biochemical parameters, such as cell viability (MTT assay), cell membrane integrity (lactate dehydrogenase release), reactive oxygen species formation, glutathione levels, immunocytochemistry analysis of iNOS, HSP70, and HO-1 levels, genomic DNA fragmentation (HALO/COMET assay), and transmembrane mitochondrial potential (deltaPsi) were examined. Cells were collected immediately at the end of the stress-inducing treatment. The results, confirming the pleiotropic function of i-NOS, indicate that: (i). HO-1/HSP32, HSP70, and iNOS are finely tuned in their expression to contribute all together, in human fibroblasts, in ameliorating the resistance to oxidative stress damage; (ii). ROS exposure, at least in hyperthermia, in human fibroblasts contributes to growth arrest more than to apoptosis activation; and (iii). mitochondrial dysfunction, in presence of iNOS inhibition seems to be clearly involved in apoptotic cell death of human fibroblasts after H(2)O(2) treatment, but not after hyperthermia.  相似文献   

6.
Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.  相似文献   

7.
Hippocampus is one of the most vulnerable tissues to glucocorticoid (GC). In the present study, we demonstrate that dexamethasone (DEX), a synthetic GC, induces apoptotic cell death in hippocampal progenitor HiB5 cells without any additional insult. Interestingly, expression of 27-kDa heat shock protein (HSP27) was markedly induced by DEX in time- and dose-dependent manners. This induction was dependent on the production of reactive oxygen species (ROS), suggesting that DEX-evoked oxidative damage to HiB5 cells is responsible for the HSP27 induction. To evaluate a possible role of HSP27, we generated two mutant HiB5 cell lines, in which expression of HSP27 was inhibited or enhanced by the over-expression of HSP27 cDNA with antisense or sense orientation (AS-HSP27 and S-HSP27, respectively). DEX-induced apoptotic cell population was significantly increased in AS-HSP27 HiB5 cells and evidently decreased in S-HSP27 cells. These results indicate that HSP27 protects hippocampal progenitor cells from GC-induced apoptotic cell death.  相似文献   

8.
9.
1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia. The first two authors contributed equally  相似文献   

10.
i-NOS and HSP70 antisense oligonucleotides were used to study the role of the two well known stress-regulated molecules on cell survival of both untreated control, and H2O2-stressed human fibroblasts. Cell survival was assessed either by LDH release or by MTT assay. The levels of cytosolic i-NOS and HSP70 were tested by using immunoblotting analysis, and reactive oxygen species (ROS) production was quantified. Compared to the values observed in untreated control cells, anti HSP70-transfected human fibroblasts showed an increase in ROS production, i-NOS level and LDH release. The addition of 0.12 mM H2O2 for 20 min. to the HSP70-deprived fibroblasts did not modify the percentage of LDH release observed in H2O2 stressed cells, but reduced cell viability increasing both ROS production and i-NOS level. Anti i-NOS-transfected fibroblasts, compared to the control untreated cells, showed no modification in ROS production, while cell survival was improved. When treated with H2O2 the i-NOS depleted cells counteracted ROS formation as well as LDH release but negatively affected cell viability and HSP70 levels, compared to the results obtained with H2O2 alone-treated fibroblasts. The data indicates that the induced decrease in HSP70 level in oxidative stress conditions makes fibroblasts more prone to oxidative injury and also increases i-NOS level. Whereas in one way the forced decrease in i-NOS expression seems to counteract ROS production stimulated by the oxidative insult in the cells, in another way, since it causes a decrease in HSP70 expression as well as in cell viability, it seems to activate some unidentified pathways affecting cell demise.  相似文献   

11.
DJ-1 is the third gene that has been linked to Parkinson disease. Mutations in the DJ-1 gene cause early onset PD with autosomal recessive inheritance. To clarify the mechanism of DJ-1 protection, we have overexpressed the gene in cultured dopaminergic cells that were then subjected to chemical stress. In the rat dopaminergic cell line, N27, and in primary dopamine neurons, overexpression of wild type DJ-1 protected cells from death induced by hydrogen peroxide and 6-hydroxydopamine. Overexpressing the L166P mutant DJ-1 had no protective effect. By contrast, knocking down endogenous DJ-1 with antisense DJ-1 rendered cells more susceptible to oxidative damage. We have found that DJ-1 improves survival by increasing cellular glutathione levels through an increase in the rate-limiting enzyme glutamate cysteine ligase. Blocking glutathione synthesis eliminated the beneficial effect of DJ-1. Protection could be restored by adding exogenous glutathione. Wild type DJ-1 reduced cellular reactive oxygen species and reduced the levels of protein oxidation caused by oxidative stress. By a separate mechanism, overexpressing wild type DJ-1 inhibited the protein aggregation and cytotoxicity usually caused by A53T human alpha-synuclein. Under these circumstances, DJ-1 increased the level of heat shock protein 70 but did not change the glutathione level. Our data indicate that DJ-1 protects dopaminergic neurons from oxidative stress through up-regulation of glutathione synthesis and from the toxic consequences of mutant humanalpha-synuclein through increased expression of heat shock protein 70. We conclude that DJ-1 has multiple specific mechanisms for protecting dopamine neurons from cell death.  相似文献   

12.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

13.
14.
Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis. In humans and experimental models, death of motor neurons is preceded by formation of cytoplasmic aggregates containing mutant SOD-1 protein. In our previous studies, heat shock protein 70 (HSP70) prolonged viability of cultured motor neurons expressing mutant human SOD-1 and reduced formation of aggregates. In this paper, we report that mutant SOD-1 proteins have altered solubility in cells relative to wild-type SOD-1 and can form a direct association with HSP70 and other stress proteins. Whereas wild-type human and endogenous mouse SOD-1 were detergent-soluble, a portion of mutant SOD-1 was detergent-insoluble in protein extracts of NIH3T3 transfected with SOD-1 gene constructs, spinal cord cultures established from G93A SOD-1 transgenic mouse embryos, and lumbar spinal cord from adult G93A transgenic mice. A direct association of HSP70, HSP40, and alphaB-crystallin with mutant SOD-1 (G93A or G41S), but not wild-type or endogenous mouse SOD-1, was demonstrated by coimmunoprecipitation. Mutant SOD-1.HSP70 complexes were predominantly in the detergent-insoluble fraction. However, only a small percentage of total cellular mutant SOD-1 was detergent-insoluble, suggesting that mutation-induced alteration of protein conformation may not in itself be sufficient for direct interaction with heat shock proteins.  相似文献   

15.
Heat shock proteins (HSP) or stress proteins serve as biomarkers to identify the contribution of stress situations underlying the pathogenesis of degenerative diseases of the CNS. We have analyzed by immunoblot technique the constitutive and inducible occurrence of stress proteins in cultured rat brain oligodendrocytes subjected to heat shock or oxidative stress exerted by hydrogen peroxide, or a combination of both. The data demonstrate that oligodendrocytes constitutively express HSP32, HSP60 and the cognate form of the HSP70 family of proteins, HSC70. After heat shock, HSP25, alpha B-crystallin and HSP70 were up-regulated, while after oxidative stress the specific induction of HSP32 and alpha B-crystallin was observed. HSP32 represents heme oxygenase 1 (HO-1), a small stress protein with enzymatic activity involved in the oxidative degradation of heme which participates in iron metabolism. The presence of the iron chelators phenanthroline or deferoxamine (DFO), which previously has been shown to protect oligodendrocytes from oxidative stress-induced onset of apoptosis, caused a marked stimulation of HSP32 without affecting HSP70. This indicates that DFO possibly exerts its protective role by directly influencing the antioxidant capacity of HO-1. In summary, HSP in oligodendrocytes are differentially stimulated by heat stress and oxidative stress. Heme oxygenase-1 has been linked to inflammatory processes and oxidative stress, its specific up-regulation after oxidative stress in oligodendrocytes suggests that it is an ideal candidate to investigate the involvement of oxidative stress in demyelinating diseases.  相似文献   

16.
Menin, the product of the multiple endocrine neoplasia type I gene, has been implicated in several biological processes, including the control of gene expression and apoptosis, the modulation of mitogen-activated protein kinase pathways, and DNA damage sensing or repair. In this study, we have investigated the function of menin in the model organism Drosophila melanogaster. We show that Drosophila lines overexpressing menin or an RNA interference for this gene develop normally but are impaired in their response to several stresses, including heat shock, hypoxia, hyperosmolarity and oxidative stress. In the embryo subjected to heat shock, this impairment was characterized by a high degree of developmental arrest and lethality. The overexpression of menin enhanced the expression of HSP70 in embryos and interfered with its down-regulation during recovery at the normal temperature. In contrast, the inhibition of menin with RNA interference reduced the induction of HSP70 and blocked the activation of HSP23 upon heat shock, Menin was recruited to the Hsp70 promoter upon heat shock and menin overexpression stimulated the activity of this promoter in embryos. A 70-kDa inducible form of menin was expressed in response to heat shock, indicating that menin is also regulated in conditions of stress. The induction of HSP70 and HSP23 was markedly reduced or absent in mutant embryos harboring a deletion of the menin gene. These embryos, which did not express the heat shock-inducible form of menin, were also hypersensitive to various conditions of stress. These results suggest a novel role for menin in the control of the stress response and in processes associated with the maintenance of protein integrity.  相似文献   

17.
Abstract

The effect of prior hyperthermia on UV-induced oxidative stress was studied in human skin fibroblasts. UV radiation alone induced an increased release of superoxide anions and increased lipid peroxidation in skin fibroblasts accompanied by a rise in catalase and superoxide dismutase activities. Hyperthermia was found to induce a significant rise in the cell content of heat-shock proteins, HSP60 and HSP70, but this treatment prior to UV radiation did not influence any indicators of oxidative stress in the fibroblasts. In contrast, the combination of heat shock prior to UV-exposure reduced fibroblast cell viability compared with UV radiation-exposure alone.  相似文献   

18.
Exercise causes heat shock (muscle temperatures of up to 45 degrees C, core temperatures of up to 44 degrees C) and oxidative stress (generation of O2- and H2O2), and exercise training promotes mitochondrial biogenesis (2-3-fold increases in muscle mitochondria). The concentrations of at least 15 possible heat shock or oxidative stress proteins (including one with a molecular weight of 70 kDa) were increased, in skeletal muscle, heart, and liver, by exercise. Soleus, plantaris, and extensor digitorum longus (EDL) muscles exhibited differential protein synthetic responses ([3H]leucine incorporation) to heat shock and oxidative stress in vitro but five proteins (particularly a 70 kDa protein and a 106 kDa protein) were common to both stresses. HSP70 mRNA levels were next analyzed by Northern transfer, using a [32P]-labeled HSP70 cDNA probe. HSP70 mRNA levels were increased, in skeletal and cardiac muscle, by exercise and by both heat shock and oxidative stress. Skeletal muscle HSP70 mRNA levels peaked 30-60 min following exercise, and appeared to decline slowly towards control levels by 6 h postexercise. Two distinct HSP70 mRNA species were observed in cardiac muscle; a 2.3 kb mRNA which returned to control levels within 2-3 h postexercise, and a 3.5 kb mRNA species which remained at elevated concentrations for some 6 h postexercise. The induction of HSP70 appears to be a physiological response to the heat shock and oxidative stress of exercise. Exercise hyperthermia may actually cause oxidative stress since we also found that muscle mitochondria undergo progressive uncoupling and increased O2- generation with increasing temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mesenchymal stem cells (MSC) promise to be valuable therapeutic tools but, due to their low numbers, require considerable in vitro expansion before use. This leads to in vitro aging, the accumulation of intracellular oxidative damage, and subsequently a decreased potential for proliferation and differentiation. Optimised culture conditions might help to reduce oxidative damage in MSC in vitro, and therefore, as reduced temperature is known to reduce oxidative stress in other somatic cells, we have investigated the effect of reduced temperature on rat MSC viability, differentiation, and oxidative damage. Temperature reduction did not affect MSC viability but increased differentiation and reduced apoptosis. Oxidative-damage-related indices were improved; reactive oxide species, nitric oxide, thiobarbituric acid reactive substances, carbonyl, and lipofuscin levels were reduced and glutathione peroxidase and superoxide dimutase levels increased. Levels of antiapoptotic heat shock proteins (HSP-27, -70, and -90) were raised and levels of the proapoptotic HSP-60 reduced. These data demonstrate that culturing MSC at reduced temperature decreases the accumulation of oxidative damage and therefore would probably improve long-term viability and successful engraftment of MSC used for tissue engineering or cell therapeutic purposes.  相似文献   

20.
目的探讨外源性降钙素基因相关肽(CGRP)和神经生长因子(NGF)对局灶性脑缺血再灌注大鼠海马热休克蛋白70(HSP70)表达的影响.方法用线栓法制备大鼠大脑中动脉阻塞(MCAO)模型,应用免疫组化和显微图像分析方法检测局灶性脑缺血再灌注大鼠海马HSP70的表达.结果假手术组海马未见HSP70阳性细胞,缺血再灌注组海马HSP70阳性细胞数增多.分别注射CGRP或NGF后海马区HSP70阳性细胞平均光密度值明显高于缺血再灌注组(P<0.01),二者合用时平均光密度值较比单独应用高(P<0.05).结论CGRP和NGF上调缺血神经元HSP70的表达,二者合用作用更强,对缺血神经元恢复有促进作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号