首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper describes a method for isolation of DNA from blood samples involving a rapid chemical disintegration of proteins with 8 M urea and with a minimum of exposure to phenol. The DNA is further desalted and purified on Sephadex G-25 prepacked disposable columns. DNA isolated in this way was pure enough to be immediately cleaved by restriction enzymes.  相似文献   

3.
Singh BK  Thomas N 《Nature protocols》2006,1(5):2428-2433
A novel method called "multiplex-terminal restriction fragment length polymorphism (M-TRFLP)" has been recently developed which can be used for simultaneous analysis of the community composition of two or more microbial taxa (up to four). This method can also be used for microbial diagnostic purposes. For M-TRFLP analysis, primers specific to different target genes are used for multiplex-PCR, with one primer for each target being labeled with a unique fluorescent dye at its 5' end. Restriction digestion of the amplified products followed by fragment size analysis on a DNA sequencer produces profiles for targeted genes, which can be distinguished from each other by the color of the terminal fragments imparted by the unique fluorescent dye used for primer labeling. In contrast to current protocols, M-TRFLP allows multiple communities or multiple targets (genes) data to be obtained in just one reaction and therefore saves time, cost and labor. This protocol can be completed in 5-8 h.  相似文献   

4.
Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 x HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 x HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 x HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.  相似文献   

5.
6.
Summary The use of two genomic EcoRI fragments as probes is discussed.  相似文献   

7.
AIMS: The suitability of genetic fingerprinting to study the microbiological basis of anaerobic bioreactor failure is investigated. METHODS AND RESULTS: Two laboratory-scale anaerobic expanded granular sludge bed bioreactors, R1 and R2, were used for the mesophilic (37 degrees C) treatment of high-strength [10 g chemical oxygen demand (COD) l(-1)] synthetic industrial-like wastewater over a 100-day trial period. A successful start up was achieved by both bioreactors with COD removal over 90%. Both reactors were operated under identical parameters; however, increased organic loading during the trial induced a reduction in the COD removal of R1, while R2 maintained satisfactory performance (COD removal >90%) throughout the experiment. Specific methanogenic activity measurements of biomass from both reactors indicated that the main route of methane production was hydrogenotrophic methanogenesis. Terminal restriction fragment length polymorphism (TRFLP) analysis was applied to the characterization of microbial community dynamics within the system during the trial. The principal differences between the two consortia analysed included an increased abundance of Thiovulum- and Methanococcus-like organisms and uncultured Crenarchaeota in R1. CONCLUSIONS: The results indicated that there was a microbiological basis for the deviation, in terms of operational performance, of R1 and R2. SIGNIFICANCE AND IMPACT OF THE STUDY: High-throughput fingerprinting techniques, such as TRFLP, have been demonstrated as practically relevant for biomonitoring of anaerobic reactor communities.  相似文献   

8.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

9.
10.
Genomic DNA clones coding for polymorphic and monomorphic arylamine N-acetyltransferases (NAT) of human liver were isolated from a genomic DNA library, and their restriction maps and partial nucleotide sequences were determined. Messenger RNA for monomorphic NAT was coded in one exon, while mRNA for polymorphic NAT was coded in two exons; the 5'-noncoding region was located in one exon 8 kb upstream from another exon containing the coding and 3'-noncoding regions. Recently, we have shown that there are three types of polymorphic NAT gene; one of the genes corresponds to a high NAT activity, while the other two genes give rise to a low NAT activity. The restriction fragment length polymorphism (RFLP) was analyzed by Southern blot hybridization of genomic DNAs from homozygotes of the three polymorphic NAT genes using various fragments of the cloned NAT gene. RFLPs of polymorphic NAT gene were observed in coding and 3'-flanking region upon digestion with BamHI and KpnI.  相似文献   

11.
The study was aimed at the screening of human chromosomal DNA for restriction fragment length polymorphism (RFLP) at the human thyroglobulin (hTg) gene locus. The RFLP screening was performed in a typical way. As hybridization probes were used 5 Pst I fragments of hTg cDNA of the total length 5.1 kb pairs cloned in pBR 322. One not described polymorphism was found by using the probe hTg 10, (nucleotides from position 4830 to 5810 in the 3' flanking region of hTg). Restriction enzyme Msp I identified a single two allele polymorphism: A1: 3.5 kb and A2: 2.5 kb. Of 32 unrelated healthy individuals two were homozygous for 3.5 kb, one was homozygous 2.5 kb and 29 were heterozygous for both 3.5 kb. and 2.5 kb. Thus, the frequencies of the 3.5 and 2.5 kb Msp I alleles were 0.52 and 0.48 respectively.  相似文献   

12.
Restriction fragment length polymorphism analysis of numerous Frankia strains, using a nifDH probe, separated the strains into three distinct groups based on hybridization patterns. The groups identified in this study were well correlated with host specificity groups identified in earlier cross-inoculation studies.  相似文献   

13.
Terminal restriction fragment length polymorphism (T-RFLP) is a culture-independent method of obtaining a genetic fingerprint of the composition of a microbial community. Comparisons of the utility of different methods of (i) including peaks, (ii) computing the difference (or distance) between profiles, and (iii) performing statistical analysis were made by using replicated profiles of eubacterial communities. These samples included soil collected from three regions of the United States, soil fractions derived from three agronomic field treatments, soil samples taken from within one meter of each other in an alfalfa field, and replicate laboratory bioreactors. Cluster analysis by Ward's method and by the unweighted-pair group method using arithmetic averages (UPGMA) were compared. Ward's method was more effective at differentiating major groups within sets of profiles; UPGMA had a slightly reduced error rate in clustering of replicate profiles and was more sensitive to outliers. Most replicate profiles were clustered together when relative peak height or Hellinger-transformed peak height was used, in contrast to raw peak height. Redundancy analysis was more effective than cluster analysis at detecting differences between similar samples. Redundancy analysis using Hellinger distance was more sensitive than that using Euclidean distance between relative peak height profiles. Analysis of Jaccard distance between profiles, which considers only the presence or absence of a terminal restriction fragment, was the most sensitive in redundancy analysis, and was equally sensitive in cluster analysis, if all profiles had cumulative peak heights greater than 10,000 fluorescence units. It is concluded that T-RFLP is a sensitive method of differentiating between microbial communities when the optimal statistical method is used for the situation at hand. It is recommended that hypothesis testing be performed by redundancy analysis of Hellinger-transformed data and that exploratory data analysis be performed by cluster analysis using Ward's method to find natural groups or by UPGMA to identify potential outliers. Analyses can also be based on Jaccard distance if all profiles have cumulative peak heights greater than 10,000 fluorescence units.  相似文献   

14.
DNA from 1008 strains of Mycobacterium avium subspecies paratuberculosis, digested by restriction endonucleases PstI and BstEII, was hybridised with a standard IS900 probe prepared by PCR and labelled non-radioactively by ECL. DNA fingerprints were scanned by CCD camera and analysed using the software Gel Compar (Applied Maths, Kortrijk, Belgium). Thirteen restriction fragment length polymorphism (RFLP) (PstI) types were detected, which where designated as A, B, C, D, E, F, G, H, I, J, K, L and M in accordance with the study of Pavlik et al. (1995) [Pavlik, I., Bejckova, L., Pavlas, M., Rozsypalova, V., Koskova, S., 1995. Characterization by restriction endonuclease analysis and DNA hybridization using IS900 of bovine, ovine, caprine and human dependent strains of Mycobacterium paratuberculosis isolated in various localities. Vet. Microbiol. 45, 311-318]. Twenty RFLP (BstEII) types were detected and designated as C1-3, C5, C7-20, S1 and I1 in accordance with the study by Collins et al. 1990 [Collins, D.M., Gabric, D.M., de Lisle, G.W., 1990. Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. J. Clin. Microbiol. 28, 1591-1596]. A combination of both RFLP (PstI) and RFLP (BstEII) results revealed a total of 28 different RFLP types. All the RFLP types and detailed protocols are available at Intemet web site WWW...: http:/ /www.vri.cz/wwwrflptext.htm.  相似文献   

15.
Residual activity of polymerase chain reaction DNA polymerases in restriction analyses strongly affected genetic profiling based on terminal restriction fragment length polymorphisms. Artificial fragment sizes produced as a result of 5'-overhang restriction site fill-in and addition of a terminal A may bias genetic profiling and genotyping of microbial communities. Efficient removal of polymerases retained original fragment sizes and significantly reduced this profiling bias in soil bacterial communities.  相似文献   

16.
We report the application of a nucleic acid-based assay that enables direct detection and identification of bacterial pathogens in fish kidney tissue without the need for bacterial culture. The technique, known as terminal restriction fragment length polymorphism (T-RFLP), employs the polymerase chain reaction (PCR) using a primer pair that targets 2 highly conserved regions of the gene that encodes for the 16S small subunit of the bacterial ribosome. Each primer is 5' labeled with a different fluorescent dye, which results in each terminus of the resulting amplicon having a distinguishable fluorescent tag. The amplicon is then digested with a series of 6 restriction endonucleases, followed by size determination of the 2 labeled terminal fragments by capillary electrophoresis with laser-induced fluorescence detection. Comparison of the lengths of the full set of 12 terminal fragments with those predicted based on analyses of GenBank submissions of 16S sequences leads to presumptive identification of the pathogen to at least the genus, but more typically the species level. Results of T-RFLP analyses of genomic DNA from multiple strains of a number of fish bacterial pathogens are presented. The assay is further demonstrated on fish kidney tissue spiked with a known number of cells of Flavobacterium psychrophilum where a detection limit of ca. 30 CFU mg(-1) of tissue was estimated. A similar detection limit was observed for several other gram-negative pathogens. This procedure was also used to detect Aeromonas salmonicida and Renibacterium salmoninarum in the kidney tissue of 2 naturally infected salmonids.  相似文献   

17.
For restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, the rDNA fragments of 1.5 kb were amplified by polymerase chain reaction (PCR) from crude cell lysates of various methanogenic species which were prepared by a combined technique of ultrasonic treatment and protease digestion. The PCR products were purified by the polyethylene glycol precipitation method and treated with various restriction enzymes. The 16S rDNA fragments digested with HaeIII or HhaI gave species-specific RFLP profiles on simplified agarose gel electrophoresis. 16S rDNA gragments of 0.4 kb from the bulk DNA extracted from mixed populations of anaerobic sludge were also amplified by PCR with a pair of methanogen-specific primers and cloned directly by the T-A cloning technique. The cloned 16S rDNAs from recombinants were reamplified by PCR, and RFLP pattern analysis was performed following digestion with HhaI. The PCR-RFLP analysis of 16S rDNA with the present protocol can be completed within one day, provided that sufficient amounts of test cells are available, and has great promise as a simple and rapid technique for identification of methanogens. A combined method consisting of PCR amplification, direc cloning with T vectors, and RFLP analysis of 16S rDNA is also useful for rapid estimation of the mixed population structure of methanogens without the need for cultivation and isolation.  相似文献   

18.
We have established unique restriction fragment length polymorphism (RFLP) patterns characteristic of homozygous typing cells (HTCs) for HLA-DR-1 through HLA-DR-8 haplotypes. These RFLP patterns were found to segregate in family members and correlate 100% with HLA-DR antibody phenotyping. The RFLP patterns were used to type chronic myelocytic leukemic cells which have a Philadelphia translocation from 23 randomly selected Caucasoid patients. The results show an alternative method for the determination of the HLA-DR types without using live cells and to study disease association with the HLA-DR region.  相似文献   

19.
Amplified restriction fragment length polymorphism in parasite genetics   总被引:3,自引:0,他引:3  
The amplified restriction fragment length polymorphism (AFLP) technique is a relatively new method for the analysis of polymorphism that has not yet been widely used in parasitology. In this article, Dan Masiga, Andy Tait and Mike Turner provide a brief introduction to AFLP and illustrate how it can be used in the investigation of marker inheritance in genetic crosses and in the analysis of polymorphism of field populations. They also briefly highlight the strengths and weaknesses of AFLP in comparison with other methods for detecting polymorphism and conclude that AFLP is a very useful addition to the range of techniques available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号