首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.  相似文献   

3.
Recent progress in macromolecular phasing, in part stimulated by the high-throughput structural biology initiatives, has made this crucial stage of the elucidation of crystal structures easier and more automatic. A quick soak in various salts leads to the rapid incorporation of the anomalously scattering ions, suitable for phasing by MAD (multiwavelength anomalous dispersion), SAD (single-wavelength anomalous dispersion) or MIR (multiple isomorphous replacement) methods. The availability of stable synchrotron beam lines equipped with elaborate hardware control and sophisticated data processing programs makes it possible to collect very accurate diffraction data and to solve structures from the very weak anomalous signal of such atoms as sulfur or phosphorus, inherently present in macromolecules. The current progress in phasing, coupled with the parallel advances in protein crystallization, diffraction data collection and so on, suggests that, in the near future, the process of macromolecular crystal structure elucidation may become fully automatic.  相似文献   

4.
A general method for solving the phase problem from native crystals of macromolecules has long eluded structural biology. For well diffracting crystals this goal can now be achieved, as is shown here, thanks to modern data collection techniques and new statistical phasing algorithms. Using solely a native crystal of tetragonal hen egg-white lysozyme, a protein of 14 kDa molecular mass, it was possible to detect the positions of the ten sulfur and seven chlorine atoms from their anomalous signal, and proceed from there to obtain an electron-density map of very high quality.  相似文献   

5.
The Seattle Structural Genomics Center for Infectious Disease (SSGCID) focuses on the structure elucidation of potential drug targets from class A, B, and C infectious disease organisms. Many SSGCID targets are selected because they have homologs in other organisms that are validated drug targets with known structures. Thus, many SSGCID targets are expected to be solved by molecular replacement (MR), and reflective of this, all proteins are expressed in native form. However, many community request targets do not have homologs with known structures and not all internally selected targets readily solve by MR, necessitating experimental phase determination. We have adopted the use of iodide ion soaks and single wavelength anomalous dispersion (SAD) experiments as our primary method for de novo phasing. This method uses existing native crystals and in house data collection, resulting in rapid, low cost structure determination. Iodide ions are non-toxic and soluble at molar concentrations, facilitating binding at numerous hydrophobic or positively charged sites. We have used this technique across a wide range of crystallization conditions with successful structure determination in 16 of 17 cases within the first year of use (94% success rate). Here we present a general overview of this method as well as several examples including SAD phasing of proteins with novel folds and the combined use of SAD and MR for targets with weak MR solutions. These cases highlight the straightforward and powerful method of iodide ion SAD phasing in a high-throughput structural genomics environment.  相似文献   

6.
We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 A resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 A resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.  相似文献   

7.
The flavoprotein component (AhpF) of Salmonella typhimurium alkyl hydroperoxide reductase contains an N-terminal domain (NTD) with two contiguous thioredoxin folds but only one redox-active disulfide (within the sequence -Cys129-His-Asn-Cys132-). This active site is responsible for mediating the transfer of electrons from the thioredoxin reductase-like segment of AhpF to AhpC, the peroxiredoxin component of the two-protein peroxidase system. The previously reported crystal structure of AhpF possessed a reduced NTD active site, although fully oxidized protein was used for crystallization. To further investigate this active site, we crystallized an isolated recombinant NTD (rNTD); using diffraction data sets collected first at our in-house X-ray source and subsequently at a synchrotron, we showed that the active site disulfide bond (Cys129-Cys132) is oxidized in the native crystals but becomes reduced during synchrotron data collection. The NTD disulfide bond is apparently particularly sensitive to radiation cleavage compared with other protein disulfides. The two data sets provide the first view of an oxidized (disulfide) form of NTD and show that the changes in conformation upon reduction of the disulfide are localized and small. Furthermore, we report the apparent pKa of the active site thiol to be approximately 5.1, a relatively low pKa given its redox potential (approximately 265 mV) compared with most members of the thioredoxin family.  相似文献   

8.
Selenomethionine labeling is the most common technique used in protein crystallography to derivatize recombinant proteins for experimental phasing using anomalous scattering at tunable synchrotron beamlines. Recently, it has been shown that UV radiation depletes electron density of selenium atoms of selenomethionine residues and that UV radiation-damage-induced phasing (equivalent to single isomorphous replacement) protocol can be applied to calculate experimental phases. Here we present the straightforward integration of a UV source with an in-house diffractometer. We show how this setup can extend the capabilities of a sealed tube X-ray generator and be used for experimental phasing of selenium-labeled proteins.  相似文献   

9.
The properties of crystalline protein materials are closely linked to crystal shape. However, the effective strategies for the shape control of protein crystals are lacking. The conventional sitting-drop vapor-diffusion method was employed to investigate the influence of pH and temperature on the crystal nucleation behavior of hen egg white lysozyme. Moreover, the size distributions of protein crystals grown at different conditions were analyzed. Differential scanning calorimetry was employed to evaluate the thermal stability of lysozyme crystals. The results indicated that pH and temperature will affect the supersaturation and electrostatic interactions among protein molecules in the nucleation process. In particular, the crystals with different aspect ratios can be selectively nucleated, depending upon the choice of pH and temperature. Therefore, this study provided a simple method for obtaining shape-controlled lysozyme crystals and supplied some information on thermal behaviors of lysozyme crystals grown at different pH values.  相似文献   

10.
The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.  相似文献   

11.
Since 1H-NMR spectra of the calcium bound form (holo) and the calcium free form (apo) of equine lysozyme have an overall similarity, the folded structure of apo equine lysozyme seems to be similar to the holo structure at 25 degrees C and pH 7.0, even at low ionic strengths except for subtle conformational change. However, calcium titration experiments showed that a number of resonances change by a slow exchange process. The changes saturated at one calcium ion per one lysozyme molecule, and no more change was observed by further addition of calcium ions. This shows that just one calcium ion binds to equine lysozyme. To make assignments for these changed proton resonances, two-dimensional 1H-NMR studies, correlated spectroscopy (COSY), two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) and nuclear Overhauser effect spectroscopy (NOESY) were carried out. A structural model of equine lysozyme based on the crystal structure of human lysozyme was estimated and used to assign some resonances in the aromatic and beta-sheet regions. It was possible to use some proton signals as a probe to determine the specific conformational change induced by calcium ions. The calcium binding constant KCa was estimated from calcium titration experiments in which changes in the proton signal were monitored. The log KCa value was found to be on the order of 6-7, which is in agreement with the calcium binding constant determined by fluorescence probes. This means that the protons are affected by specific calcium binding.  相似文献   

12.
Counterdiffusion crystallization in capillary is a very simple, cost-effective, and practical procedure for obtaining protein crystals suitable for X-ray data analysis. Its principles have been derived using well-known concepts coupling the ideas of precipitation and diffusion mass transport in a restricted geometry. The counterdiffusion process has been used to simultaneously screen for optimal conditions for protein crystal growth, incorporate strong anomalous scattering atoms, and mix in cryogenic solutions in a single capillary tube. The crystals obtained in the capillary have been used in situ for X-ray analysis. The implementation of this technique linked to the advancement of current crystallography software leads to a powerful structure determination method consolidating crystal growth, X-ray data collection, and ab initio phase determination into one without crystal manipulation. We review the historical progress of counterdiffusion crystallization, its application to X-ray crystallography, and ongoing tool development for high-throughput protein structure determination.  相似文献   

13.
Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.  相似文献   

14.
The dynamics of the side groups of amino acid residues and local conformational changes in the lysozyme molecule upon dehydration and rehydration of lysozyme crystals were studied by the methods of spin label, X-ray diffraction, and molecular dynamics. The His15 residue of lysozyme from chicken egg white was modified by spin label, and spin-labeled tetragonal crystals of the protein were grown. The spatial structure of the covalently bound spin label and its immediate surroundings in the lysozyme tetragonal crystal was determined. The conformation of a fragment of the lysozyme molecule with the spin label on His15, optimized by the method of molecular dynamics, closely agreed with X-ray data. It was found by the X-ray diffraction analysis that a decrease in relative humidity to 40% is accompanied by both a decrease in the unit cell volume by 27% and a change in the diffraction field of roentgenograms from 0.23 to 0.60 HM. The dehydration of spin-labeled lysozyme crystals leads to an anomalous widening of EPR peaks without changes in their position. The dehydration in the humidity range studied has a two-stage character. The decrease in humidity to 75% is accompanied by a sharp change in the parameters measured, and on further decrease in humidity to 40% they change insignificantly. The first stage is caused by the removal of the greater part of molecules of bulk water, and the second stage is due to the removal of the remaining bulk water and possible changes in the dynamics of weakly bound water molecules and their position. The simulation of experimental EPR spectra showed that the anomalous broadening of the spectrum upon dehydration is related to an increase in the dispersion of spin label orientations induced by changes in the network of hydrogen bonds generated by water molecules in the vicinity of the spin label and a possible turn (by no more than 5 degrees) of the entire protein molecule. After rehydration, the physical state of the lysozyme crystal did not return to the starting point.  相似文献   

15.
Rubredoxin (D.g. Rd), a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas, has been crystallized using the hanging-drop vapor diffusion method and macroseeding method. Rubredoxin crystals diffract to an ultra-high resolution 0.68 A using synchrotron radiation X-ray, and belong to the space group P2(1) with unit-cell parameters a=19.44 A, b=41.24 A, c=24.10 A, and beta=108.46 degrees. The data set of single-wavelength anomalous dispersion signal of iron in the native crystal was also collected for ab initio structure re-determination. Preliminary analysis indicates that there is one monomer with a [Fe-4S] cluster in each asymmetric unit. The crystal structure at this ultra-high resolution will reveal the details of its biological function. The crystal character and data collection strategy for ultra-high resolution will also be discussed.  相似文献   

16.
Liu X  Zhang H  Wang XJ  Li LF  Su XD 《PloS one》2011,6(9):e24227
The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.  相似文献   

17.
Adsorption characteristics of native and cross-linked lysozyme crystals were examined using fluorescein as model adsorbate. The adsorption isotherms exhibited Langmuir or linear behavior. The affinity constant (b1) and the adsorption capacity (Qsat) for fluorescein were found to depend on the type and concentration of co-solute present in the solution. The dynamics of adsorption isotherm transition from Langmuir to linear showed that affinity of lysozyme for solutes increases in the order 2-(cyclohexylamino)ethanesulphonic acid (CHES), 4-morpholinepropanesulphonic acid (MOPS), acetate, fluorescein. Furthermore, the crystal morphology, the degree of cross-linking of the crystals, and, in particular, solution pH were identified as factors determining fluorescein adsorption by the lysozyme crystals. These factors seem to affect crystal capacity for the solute more than affinity for the solute. Adsorption of fluorescein by cross-linked tetragonal lysozyme crystals was exponentially dependent on the lysozyme net charge calculated from the final solution pH. The 3-5-fold increase in the fluorescein adsorption as a result of cross-linking is presumably due to the increasing hydrophobicity of the lysozyme crystal.  相似文献   

18.
The B-subunit of verotoxin-1, which is believed to form a pentamer (monomer Mr = 7691), has been crystallized by vapor diffusion over a wide range of conditions. The best crystals, obtained with polyethylene glycol 8000 as the precipitant, belong to the orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 59.2 A, b = 102.7 A, c = 56.3 A. The cell dimensions are consistent with one B-subunit pentamer per asymmetric unit, and the crystals diffract to at least 2.0 A resolution. Data collected using synchrotron radiation at a wavelength of 2.070 A may allow the structure to be solved using the anomalous signal from three sulfur atoms in the monomer, combined with averaging over the non-crystallographic symmetry.  相似文献   

19.
Cryocrystallography is routinely used in macromolecular crystallography laboratories. The main advantage of X-ray diffraction data collection near 100K is that crystals display much less radiation damage than seen at room temperature. Techniques and tools are described to facilitate cryoprotecting and flash-cooling crystals for data collection.  相似文献   

20.
The laser Raman-scattering technique was employed to examine the question of whether the structure of a globular protein is the same in crystals as in solution. Lysozyme was selected as a model system for this study. In the amide I and amide III regions we found a good agreement between the Raman spectra of lysozyme chloride crystals (in 100% relative humidity) and lysozyme solution (at pH 4.50), indicating that the main-chain conformation is the same between two phases. However, small but definite spectral differences were observed near 464, 622, 644, 934, 960, 978, 1032, 1129, and 1196 cm?1. Some of these spectral differences may be interpreted in terms of side-chain conformational changes. Additionally, we present Raman spectrum of lysozyme in the lyophilized form and compare it to those of crystals and solution. It was concluded that lyophilization caused conformational changes appreciably, both in the main chain and side chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号