首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermophilic green sulfur bacterium Chlorobium tepidum grew with N2, NH4+, or glutamine as the sole nitrogen source under phototrophic (anaerobic-light) conditions. Growth on N2 required increased buffering capacity to stabilize uncharacterized pH changes that occurred during diazotrophic growth. Increased sulfide levels were stimulatory for growth on N2. Levels of nitrogenase activity (acetylene reduction) in N2-grown C. tepidum cells were very high, among the highest ever reported for anoxygenic phototrophic bacteria. Maximal acetylene reduction rates in C. tepidum cells were observed at 48 to 50 degrees C, which is about 15 degrees C higher than the optimum temperature for nitrogenase activity in mesophilic chlorobia, and nitrogenase activity in C. tepidum responded to addition of ammonia by a "switch-off/switch-on" mechanism like that in phototrophic purple bacteria. C. tepidum cells assimilated ammonia mainly via the glutamine synthetase-glutamate synthase pathway, elevated levels of both of these enzymes being present in cells grown on N2. These results show that N2 fixation can occur in green sulfur bacteria up to at least 60 degrees C and that regulatory mechanisms important in control of nitrogenase activity in mesophilic anoxygenic phototrophs also appear to regulate thermally active forms of the enzyme.  相似文献   

2.
In this study, we performed the first large-scale identification of N-terminal peptides from the green sulfur bacterium Chlorobaculum tepidum. Combined fractional diagonal chromatography (COFRADIC) was used to isolate protein N-terminal peptides from three different proteome preparations, and following LC-MS/MS analysis, over 621 different proteins were identified by their N-terminal peptides. Our data constitute the largest data set currently available for protein N-termini of prokaryotic photosynthetic organisms.  相似文献   

3.
The broad-host-range IncQ group plasmids pDSK519 and pGSS33 were transferred by conjugation from Escherichia coli into the thermophilic green sulfur bacterium Chlorobium tepidum. C. tepidum exconjugants expressed the kanamycin and ampicillin-chloramphenicol resistances encoded by pDSK519 and pGSS33, respectively. Ampicillin resistance was a particularly good marker for selection in C. tepidum. Both pDSK519 and pGSS33 were stably maintained in C. tepidum at temperatures below 42 degrees C and could be transferred between C. tepidum and E. coli without modifications. Conjugation frequencies ranged from 10(-1) to 10(-4) exconjugants per donor cell, and frequencies of 10(-2) to 10(-3) were consistently obtained when ampicillin resistance was used as a selectable marker. Methods for growth of C. tepidum on agar, isolation of plating strains and antibiotic-resistant mutants of wild-type C. tepidum cells, and optimum conditions for conjugation were also investigated.  相似文献   

4.
Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild-type C. tepidum at 40 degrees C on agar plates could be completely inhibited by 100 microg of gentamicin ml(-1), 2 microg of erythromycin ml(-1), 30 microg of chloramphenicol ml(-1), or 1 microg of tetracycline ml(-1) or a combination of 300 microg of streptomycin ml(-1) and 150 microg of spectinomycin ml(-1). Transformation was performed by spotting cells and DNA on an agar plate for 10 to 20 h. Transformation frequencies on the order of 10(-7) were observed with gentamicin and erythromycin markers, and transformation frequencies on the order of 10(-3) were observed with a streptomycin-spectinomycin marker. The frequency of spontaneous mutants resistant to gentamicin, erythromycin, or spectinomycin-streptomycin was undetectable or significantly lower than the transformation frequency. Transformation with the gentamicin marker was observed when the transforming DNA contained 1 or 3 kb of total homologous flanking sequence but not when the transforming DNA contained only 0.3 kb of homologous sequence. Linearized plasmids transformed at least an order of magnitude better than circular plasmids. This work forms a foundation for the systematic targeted inactivation of genes in C. tepidum, whose 2.15-Mb genome has recently been completely sequenced.  相似文献   

5.
Green sulfur bacteria are obligate anaerobic phototrophs, which in addition to outer and plasma membranes contain chlorosomes. The analysis of the membrane proteome of Chlorobium tepidum from chlorosome-depleted membranes is described in this study. The membranes were purified by sucrose density centrifugation and characterized by 1-DE and 2-DE coupled with MS, absorption spectroscopy, and electron microscopy. 1-DE and 2-DE were employed to analyze the membrane proteins and to characterize the capabilities of the methods. Solubilization of the membrane proteins prior to 2-DE was improved by using a series of zwitterionic detergents. Based on the resolved spots after 2-DE, the combination of amidosulfobetaine 14 with Triton X-100 is more efficient than the combination of CHAPS, N-decyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, and Triton X-100. From the application of 1-DE and 2-DE, 167 and 202 unique proteins were identified, respectively, using PMF by MALDI-TOF MS. Both methods resulted in the detection of 291 different proteins of which only 88 were predicted membrane proteins, indicating the limitation of membrane protein detection after separation with electrophoresis methods. In addition, 53 of these proteins were identified as outer membrane proteins.  相似文献   

6.
The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur bacteria and green filamentous bacteria is also discussed.  相似文献   

7.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

8.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the incorporation of atmospheric CO(2) into ribulose 1,5-bisphosphate (RuBP). RuBisCOs are classified into four forms based on sequence similarity: forms I, II and III are bona fide RuBisCOs; form IV, also called the RuBisCO-like protein (RLP), lacks several of the substrate binding and catalytic residues and does not catalyze RuBP-dependent CO(2) fixation in vitro. To contribute to understanding the function of RLPs, we determined the crystal structure of the RLP from Chlorobium tepidum. The overall structure of the RLP is similar to the structures of the three other forms of RuBisCO; however, the active site is distinct from those of bona fide RuBisCOs and suggests that the RLP is possibly capable of catalyzing enolization but not carboxylation. Bioinformatic analysis of the protein functional linkages suggests that this RLP coevolved with enzymes of the bacteriochlorophyll biosynthesis pathway and may be involved in processes related to photosynthesis.  相似文献   

9.
Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid gel-free, filter-aided sample preparation (FASP) protocol with an in-solution isotopic labeling strategy. Among the 2245 proteins predicted from the Cba. tepidum genome, approximately 970 proteins were detected in unlabeled samples, whereas approximately 630-640 proteins were detected in labeled samples comparing two different growth conditions. Wild-type cells growing on thiosulfate had an increased abundance of periplasmic cytochrome c-555 and proteins of the periplasmic thiosulfate-oxidizing SOX enzyme system when compared with cells growing on sulfide. A dsrM mutant of Cba. tepidum, which lacks the dissimilatory sulfite reductase DsrM protein and therefore is unable to oxidize sulfur globules to sulfite, was also investigated. When compared with wild type, the dsrM cells exhibited an increased abundance of DSR enzymes involved in the initial steps of sulfur globule oxidation (DsrABCL) and a decreased abundance of enzymes putatively involved in sulfite oxidation (Sat-AprAB-QmoABC). The results show that Cba. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism and other electron-transferring processes in response to the availability of reduced sulfur compounds.  相似文献   

10.
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with -cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.Abbreviations -CD -cyclodextrin - BChl bacteriochlorophyll - BChl c H bacteriochlorophyllide c - [E,M] BChl c F 8-ethyl, 12-methyl, farnesyl BChl c - [E,E] BChl c F 8-ethyl, 12-ethyl, farnesyl BChl c - [P,E] BChl c F 8-propyl, 12-ethyl, farnesyl BChl c - [I,E] BChl c F 8-isobutyl, 12-ethyl, farnesyl BChl c - Car carotenoids  相似文献   

11.
The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.  相似文献   

12.
In this article, we developed a new and mild procedure for the isolation of chlorosomes from a green sulfur bacterium Chlorobaculum tepidum. In this procedure, Fenna-Matthews-Olson (FMO) protein was released by long cold treatment (6°C) of cells under the presence of a chaotrope (2?M NaSCN) and 0.6?M sucrose. Chlorosomes were released by an osmotic shock of the cold-treated cells after the formation of spheroplasts without mechanical disruption. Chlorosomes were finally purified by a sucrose step-wise density gradient centrifugation. We obtained two samples with different density (20 and 23% sucrose band, respectively) and compared them by SDS-PAGE, absorption spectroscopy at 80?K, fluorescence and CD spectroscopy at room temperature. Cells whose absorption maximum was longer than 750?nm yielded higher amount of the 20% sucrose fraction than those having an absorption maximum shorter than 750?nm.  相似文献   

13.
Ferredoxin-NAD(P)(+) reductase [EC 1.18.1.3, 1.18.1.2] was isolated from the green sulfur bacterium Chlorobium tepidum and purified to homogeneity. The molecular mass of the subunit is 42 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the native enzyme is approximately 90 kDa, estimated by gel-permeation chromatography, and is thus a homodimer. The enzyme contains one FAD per subunit and has absorption maxima at about 272, 385, and 466 nm. In the presence of ferredoxin (Fd) and reaction center (RC) complex from C. tepidum, it efficiently catalyzes photoreduction of both NADP(+) and NAD(+). When concentrations of NADP(+) exceeded 10 microM, NADP(+) photoreduction rates decreased with increased concentration. The inhibition by high concentrations of substrate was not observed with NAD(+). It also reduces 2,6-dichlorophenol-indophenol (DPIP) and molecular oxygen with either NADPH or NADH as efficient electron donors. It showed NADPH diaphorase activity about two times higher than NADH diaphorase activity in DPIP reduction assays at NAD(P)H concentrations less than 0.1 mM. At 0.5 mM NAD(P)H, the two activities were about the same, and at 1 mM, the former activity was slightly lower than the latter.  相似文献   

14.
We have investigated the changes in the pigment composition and organisation of the light-harvesting apparatus of the green sulfur bacterium Chlorobium tepidum growing under different light intensities. Cells grown at lower light intensities had lower exponential growth rates and increased amounts of the main light-harvesting pigments, bacteriochlorophyll c and carotenoids, on a cell protein basis. Absorption spectra of chlorosomes isolated from cells grown at low light intensities revealed a red-shift of up to 8 nm in the Qy band of bacteriochlorophyll c compared to chlorosomes from high light grown cells. A similar red-shift of up to 4 nm was also observed in the corresponding fluorescence emission peaks. HPLC analysis of pigment extracts showed a correlation between the red-shift and the content of the more alkylated BChl c homologs, which increased as light intensity for growth was lower. Furthermore, analysis of the carotenoid composition in chlorosomes re vealed a conspicuous change in the ratio between chlorobactene and 1, 2-dihydrochlorobactene, which dramatically decreased from 5 to 0.7 in light-limited cultures.  相似文献   

15.
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.  相似文献   

16.
N Kusumoto  P Sétif  K Brettel  D Seo  H Sakurai 《Biochemistry》1999,38(37):12124-12137
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.  相似文献   

17.
The cytochrome (Cyt) c-554 in thermophilic green photosynthetic bacterium Chlorobaculum tepidum serves as an intermediate electron carrier, transferring electrons to the membrane-bound Cyt c z from various enzymes involved in the oxidations of sulfide, thiosulfate, and sulfite compounds. Spectroscopically, this protein exhibits an asymmetric α-absorption band for the reduced form and particularly large paramagnetic 1H NMR shifts for the heme methyl groups with an unusual shift pattern in the oxidized form. The crystal structure of the Cyt c-554 has been determined at high resolution. The overall fold consists of four α-helices and is characterized by a remarkably long and flexible loop between the α3 and α4 helices. The axial ligand methionine has S-chirality at the sulfur atom with its CεH3 group pointing toward the heme pyrrole ring I. This configuration corresponds to an orientation of the lone-pair orbital of the sulfur atom directed at the pyrrole ring II and explains the lowest-field 1H NMR shift arising from the 181 heme methyl protons. Differing from most other class I Cyts c, no hydrogen bond was formed between the methionine sulfur atom and polypeptide chain. Lack of this hydrogen bond may account for the observed large paramagnetic 1H NMR shifts of the heme methyl protons. The surface-exposed heme pyrrole ring II edge is in a relatively hydrophobic environment surrounded by several electronically neutral residues. This portion is considered as an electron transfer gateway. The structure of the Cyt c-554 is compared with those of other Cyts c, and possible interactions of this protein with its electron transport partners are discussed.  相似文献   

18.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

19.
Green sulfur bacteria possess two light-harvesting antenna systems, the chlorosome and the Fenna-Matthews-Olson (FMO) protein. In addition to self-aggregated bacteriochlorophyll (BChl) c, chlorosomes of Chlorobium tepidum contain a small amount of BChl a (ratio 100:1). The chlorosomal BChl a is associated with CsmA, a 6.2 kDa protein that accounts for more than 50% of the protein content of chlorosomes. This CsmA-BChl a complex is located in the chlorosome baseplate with the hydrophilic C-terminal part of CsmA in contact with the FMO protein. CsmA was purified from Chl. tepidum. Isolated chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS-PAGE. Mass spectrometric analysis showed an m/z of 6154.8, in agreement with the calculated mass of the csmA gene product after C-terminal processing. CD spectroscopy of the isolated protein showed that the main structural motif was an alpha-helix. We have reconstituted the isolated CsmA protein with BChl a in micelles of n-octyl beta-d-glucopyranoside. The resulting preparation reproduced the spectral characteristics of the CsmA-BChl a complex present in the chlorosome baseplate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号